
IN DEGREE PROJECT COMPUTER SCIENCE AND ENGINEERING,
SECOND CYCLE, 30 CREDITS

, STOCKHOLM SWEDEN 2019

MahlerNet
Unbounded Orchestral Music with Neural
Networks

ELIAS LOUSSEIEF

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

MahlerNet
Unbounded Orchestral Music with Neural Networks

Swedish subtitle:
Orkestermusik utan begränsning med neurala nätverk

Master’s Thesis in Computer Science
KTH Royal Institute of Technology, Sweden

School of Electrical Engineering and Computer Science

By: Elias Lousseief

Date: June 28, 2019
Course: DA225X

Supervisor: Bob L. Sturm, bobs@kth.se
Examiner: Hedvig Kjellström, hedvig@kth.se

Abstract
Modelling music with mathematical and statistical methods in general, and with neural networks
in particular, has a long history and has been well explored in the last decades. Exactly when the
first attempt at strictly systematic music took place is hard to say; some would say in the days of
Mozart, others would say even earlier, but it is safe to say that the field of algorithmic composition
has a long history. Even though composers have always had structure and rules as part of the
writing process, implicitly or explicitly, following rules at a stricter level was well investigated in
the middle of the 20th century at which point also the first music writing computer program based
on mathematics was implemented.

This work in computer science focuses on the history of musical composition with computers, also
known as algorithmic composition, using machine learning and neural networks and consists of
two parts: a literature survey covering in-depth the last decades in the field from which is drawn
inspiration and experience to construct MahlerNet, a neural network based on the previous archi-
tectures MusicVAE, BALSTM, PerformanceRNN and BachProp, capable of modelling polyphonic
symbolic music with up to 23 instruments. MahlerNet is a new architecture that uses a custom
preprocessor with musical heuristics to normalize and filter the input and output files in MIDI
format into a data representation that it uses for processing. MahlerNet, and its preprocessor, was
written altogether for this project and produces music that clearly shows musical characteristics
reminiscent of the data it was trained on, with some long-term structure, albeit not in the form of
motives and themes.

Keywords: music, composition, algorithmic composition, neural networks, recurrent neural net-
works, RNN, variational autoencoder, VAE, LSTM, BALSTM, MusicVAE, PerformanceRNN,
BachProp

Sammanfattning
Matematik och statistik i allmänhet, och maskininlärning och neurala nätverk i synnerhet, har
sedan långt tillbaka använts för att modellera musik med en utveckling som kulminerat under de
senaste decennierna. Exakt vid vilken historisk tidpunkt som musikalisk komposition för första
gången tillämpades med strikt systematiska regler är svårt att säga; vissa skulle hävda att det
skedde under Mozarts dagar, andra att det skedde redan långt tidigare. Oavsett vilket, innebär
det att systematisk komposition är en företeelse med lång historia. Även om kompositörer i alla
tider följt strukturer och regler, medvetet eller ej, som en del av kompositionsprocessen började
man under 1900-talets mitt att göra detta i högre utsträckning och det var också då som de första
programmen för musikalisk komposition, baserade på matematik, kom till.

Den här uppsatsen i datateknik behandlar hur musik historiskt har komponerats med hjälp av
datorer, ett område som också är känt som algoritmisk komposition. Uppsatsens fokus ligger på
användning av maskininlärning och neurala nätverk och består av två delar: en litteraturstudie som
i hög detalj behandlar utvecklingen under de senaste decennierna från vilken tas inspiration och
erfarenheter för att konstruera MahlerNet, ett neuralt nätverk baserat på de tidigare modellerna
MusicVAE, BALSTM, PerformanceRNN och BachProp. MahlerNet kan modellera polyfon musik
med upp till 23 instrument och är en ny arkitektur som kommer tillsammans med en egen prepro-
cessor som använder heuristiker från musikteori för att normalisera och filtrera data i MIDI-format
till en intern representation. MahlerNet, och dess preprocessor, är helt och hållet implementerade
för detta arbete och kan komponera musik som tydligt uppvisar egenskaper från den musik som
nätverket tränats på. En viss kontinuitet finns i den skapade musiken även om det inte är i form
av konkreta teman och motiv.

Nyckelord: musik, komposition, algoritmisk komposition, neurala nätverk, recurrent neural net-
works, RNN, variational autoencoder, VAE, LSTM, BALSTM, MusicVAE, PerformanceRNN,
BachProp

Preface
The subject of computers and arts have a long imaginative history and has been brought up in a
wide range of fields including philosophy, entertainment, arts and technology. As a music academic
and a person who is generally interested both in discussions and arts, I have often been asked if
a computer will ever be as good a composer as a human. The anticipated answer has not always
been the same and while some feel that music is just a schematic system of musical events that
about any decent artificial intelligence should be able to jot down, others appreciate that music
has a vast depth and amounts to one of those few things that are utterly and genuinely human
and farther away than everything from being synthesized by machines. My position has always
been that I believe that computers won’t be able to come up with anything that a human doesn’t
instruct it to come up with and then, indirectly, it is a human who is the creator and not the
machine.

When I first saw the results from Google’s Deep Dream Generator project, it was the first time
ever that I felt that a machine had created something artistic in an original and autonomous way.
Finally, a machine had done it! Given my past as a composition student, I was intrigued with what
neural networks could do with music, and at that moment, the seed to an idea of a master’s thesis
topic was planted.

This thesis is the realization of a neural network capable of modelling music. Besides the inspiration
from Google’s Deep Dream Generator project, an important goal with this master’s thesis has been
to learn a low-level machine learning framework in depth. A final inspiration, not realized entirely
in this thesis, has been the way neural networks lend themselves to conditioning; a dream that has
kept me going has been the idea of a neural network’s understanding of the fusion of my big hero
Gustav Mahler and some famous pop artist, for example Madonna or Robbie Williams.

The reference system used in this thesis is APA-like, which in reality means APA with two changes.
First, all references use a bold and italicized highlighting to make it easy for the reader to skip
large chunks of references and continue reading the actual text. Second, a reference can have a
parenthesis with a model name. This has been added to make it easy for readers to follow specific
models and put facts given about a certain reference into a context. Thus, the more condensed
reference style, with "[1-32]" for example, was not an option since it would have made this sort
of tracking of individual models impossible without looking at the references section, in the back,
constantly.

Enjoy the reading!

Elias Lousseief, Stockholm, May 15 2019

“Somewhere underneath,

very deeply,

there’s a common place in our spirit where
the beauty of mathematics and the beauty of

music meet.

But they don’t meet on the level of
algorithms or making music by calculation.

It’s much lower, much deeper,
or much higher you could say.”

Györgi Ligeti (Edwards, 2011)

Contents
Abstract

Sammanfattning

Foreword

1 INTRODUCTION 1
1.1 Background . 1
1.2 Problem Statement and Limitations . 2
1.3 Ethical, Societal and Sustainability Aspects . 3

2 FUNDAMENTALS 5
2.1 Music . 5
2.2 Neural Networks . 8

3 LITERATURE SURVEY 17
3.1 Historical Notes . 18
3.2 The Computer Era . 20

3.2.1 Algorithmic Composition . 20
3.2.2 Groupings . 21
3.2.3 Contemporary Alternatives Without Neural

Networks . 22
3.2.3.1 The Naive Way . 22
3.2.3.2 Mathematics . 23
3.2.3.3 Genetic Algorithms . 23
3.2.3.4 Markov Models or Markov Chains 23
3.2.3.5 Grammars and L-Systems . 24
3.2.3.6 AI Algorithms . 26

3.2.4 Modelling Music with Neural Networks . 26
3.2.4.1 Application / Purpose . 28
3.2.4.2 Domain . 32
3.2.4.3 Musical Domain . 33
3.2.4.4 Genre . 35
3.2.4.5 Input Representation . 37
3.2.4.6 Data Representation . 40
3.2.4.7 Model / Architecture . 54
3.2.4.8 Frameworks . 96
3.2.4.9 Datasets . 96
3.2.4.10 Evaluation . 97
3.2.4.11 Source Code . 100
3.2.4.12 Samples . 100

3.3 Summary . 101

4 METHOD 105
4.1 Design Choices . 105

4.1.1 State of the Art . 105

4.1.2 Paragons . 107
4.1.3 Large-scale Design - Architecture . 108
4.1.4 In-depth Design - Implementation Details 110

4.2 MahlerNet . 113
4.2.1 Modelled Properties . 114

4.2.1.1 Offset and Duration . 114
4.2.1.2 Pitch . 116
4.2.1.3 Instrument . 116

4.2.2 Preprocessor . 117
4.2.2.1 The MIDI Format . 117
4.2.2.2 Tokenization . 118
4.2.2.3 Processing . 119
4.2.2.4 Data Representation . 121

4.2.3 Encoder . 121
4.2.4 Variational Autoencoder . 121
4.2.5 Decoder . 122

4.2.5.1 RNN . 122
4.2.5.2 BALSTM . 122

4.2.6 Output Layers . 123
4.3 File Organization . 125
4.4 Running MahlerNet . 127
4.5 Experiments . 128

5 RESULTS 129
5.1 Experiment 1: Modelling Pitch . 129

5.1.1 Short Runs (VAE Only) . 130
5.1.2 Long Runs (VAE Only) . 131

5.1.2.1 BALSTM Transpositional Invariance 132
5.1.2.2 VAE Latent Space . 132

5.1.3 Long Runs (VAE and Context) . 133
5.2 Experiment 2: Modelling All Properties . 135

5.2.1 Short Runs (VAE Only) . 136
5.2.2 Improving the Results . 137

5.2.2.1 Conditioning on Metric Structure 137
5.2.2.2 Improving Pitch Predictions . 137
5.2.2.3 Conditioning on Active Instrument 138
5.2.2.4 The New Default . 138

5.2.3 Long Runs (VAE Only) . 139
5.2.3.1 BALSTM Transpositional Invariance 140
5.2.3.2 VAE Latent Space . 140

5.2.4 Long Runs (VAE and Context) . 143
5.3 Experiment 3: Modelling Gustav Mahler . 147

5.3.1 Long Runs (VAE Only) . 147
5.3.1.1 VAE Latent Space . 148

5.3.2 Long Runs (VAE and Context) . 148

6 DISCUSSION 151
6.1 Implementation . 151

6.1.1 MIDI . 151
6.1.2 Architecture . 152

6.2 Experiments . 153
6.2.1 Experiment 1 . 154
6.2.2 Experiment 2 . 155
6.2.3 Experiment 3 . 159

6.3 On the Art of Training Neural Networks . 160

7 FUTURE WORK 165
7.1 MahlerNet . 165
7.2 Other Strategies . 166
7.3 Future Directions and Conceptual Ideas . 167

8 CONCLUSION 169

ACKNOWLEDGEMENTS

BIBLIOGRAPHY

APPENDICES
Literature Survey: Frameworks . A
Literature Survey: Preprocessing Frameworks . B
Literature Survey: Datasets . C
Literature Survey: Results . D
Literature survey: Sources . E
Literature survey: Samples . F
Method: Datasets . G
Results: Samples . H

1 INTRODUCTION

1.1 Background
Ever since the dawn of computers, it has been a standing question whether these machines can
produce arts or not. As humans, perhaps feeling threatened by the superiority of these machines
on some tasks, we have often emphasized that arts is something that is reserved to the human
mind only; a last privilege in a rapidly more and more automatized world. Arts performers,
however, are often faced with the question of how to renew themselves and how to not get stuck
in old and familiar patterns. Throughout the years, in all arts fields, diverse sets of systematized
techniques have been used to come up with new themes and expressions and a well-known principle
in aesthetics is that you need to learn the rules of the old masters in order to truly break them.
With this in mind, wouldn’t it be fantastic if we could use the unbiased "minds" of computers to
head up in new directions without being affected by our own previous inspiration and habits?

In the last decade, a sub-field of machine learning focused on arts has emerged and there are
now machine learning communities that are active in virtually all arts fields where the art can be
quantified as data. Due to that image recognition and processing have always been popular tasks
and data in these fields exist in vast quantities, it is not surprising that arts dealing with images
have been explored more than others, with results reaching new heights with the arrival of the
Deep Dream Generator (Mordvintsev et al., 2015) which can actually create astonishing image
art that bears the impression of being from another world. Nevertheless, other arts fields have also
been explored. Compared to classic machine learning problems, results in the arts field have, as
expected, been much harder to interpret and evaluate in a unified way, as is the case with art in
general.

The method of creating music with the help of programming and computers has been given the
expression algorithmic composition and is by no means limited to music created with machine
learning. Quite to the contrary, different categories of algorithms, including deterministic, genetic
and random algorithms, have been tested for this purpose ever since the 1950’s with varying pur-
poses and results. During the recent machine learning revolution, much work has been invested in
teaching machine learning algorithms to compose music resulting in a very diverse field with results
pointing in many directions. As with contemporary machine learning and artificial intelligence in
general, a large portion of these attempts have involved artificial neural networks.

There are many reasons to why investigating machine learning techniques for arts, and more
specifically music, is interesting. These, in turn, depend on the intended use of these techniques,

1

2 1 INTRODUCTION

which is not something that everyone agrees on in the community today. Given the commercial
point of view of a fully automated music composition system, there are numerous places and
occasions where original music is needed for some purpose. For example in video games, in movies
and in clubs where music is a large part of the focus, automated music, perhaps conditioned on a
particular style, would indeed fill a purpose, perhaps intimately associated with demise for today’s
composers. Also in places where music is less in focus, for example in elevators and in lounges,
automated music production would fill a role and most certainly be cheaper to play than music
composed by humans with the added benefit of being able to generate new and unique music at
all times. With less commercial purposes in mind, a music composition tool, fully automated or
requiring human interaction, could act as an aid to composers helping them to develop and get
new ideas. Finally, there lies an aesthetic-scientific interest in finding out what latent factors a
program can track down and steer, given a set of historical music pieces and styles.

1.2 Problem Statement and Limitations
Given both the current main focus of machine learning in general, but also recent streams of
algorithmic composition in particular, the overall purpose of this work is to construct, train and
evaluate a novel neural network architecture capable of composing music in the same style, or a
fusion thereof, as the music it was trained on.

At a higher level of detail, this implies an objective that is two-fold:

• What does the history of algorithmic composition in general, and with neural networks in
particular, look like? This involves researching the field of algorithmic composition, focusing
on recent algorithmic composition in machine learning in general, and with neural networks
in particular, and collect the research in a literature survey.

• Considering recent advancements, what would a new neural network architecture for algorith-
mic composition look like and how can it be implemented? This objective implies the design,
implementation, training and evaluation of a new neural network architecture based on the
literature survey from the first objective.

In particular, the designed neural network should fulfill the following conditions (C):

C.1 Model polyphonic music.

C.2 Model a variable number of different instruments.

C.3 Be steerable by means of seeding or conditioning to some degree, in the way that it outputs
different compositions as a result of different seeds and / or conditionings.

C.4 Have no restrictions on the length of the output music.

C.5 Be end-to-end and not require any extra manual annotations.

1 INTRODUCTION 3

C.6 Make minimal assumptions on the input.

C.7 Model symbolic (notated, as opposed to sounding) music in its basic form only, that is, a
stream of notes against an underlying meter possible to visualize in a rudimentary score.
Tempo, dynamics, accents, character and other playing instructions are out of focus as well
as any sounding musical properties such as micro-timing or ornaments.

C.8 Model pitch-based instruments only and not purely rhythmic instruments.

The rest of this thesis has the following structure: in section 2 some theoretical background on music
as well as machine learning and neural networks is presented and then section 3 is the literature
survey, also filling the role of a previous or related work section. Both of these sections can be
omitted for readers who are familiar with the theory of music, machine learning and algorithmic
composition in particular. At the end of the literature survey, there is a brief summary of the most
common paths that have been taken with respect to different aspects historically. MahlerNet and
justifications for design choices taken during its implementation are presented in section 4 after
which comes section 5 where three different experiments and results are presented without further
interpretation. In section 6, the results in section 5 are commented, elaborated on and analyzed
and section 8 contains a short summary of what has been done and what conclusions can be drawn
from it. Section 7 contains directions of interest and paths for future exploration, both with this
work in mind and in general. After the bibliography follow appendices containing tables gathered
during the literature survey as well as details on different aspects from section 5.

1.3 Ethical, Societal and Sustainability Aspects
As always with machine learning and artificial intelligence, it is hard to know what overall impact
the contribution within a very confined field may have when ported to other fields. Numerous
are the historical occasions when important, sometimes horrible, inventions arrive in the form of
something else where the world, or the inventor herself, might have not anticipated the chain of
events to follow. In the world of artificial intelligence (AI), there exists groups and organizations
that are for an open source climate, but that still don’t make available their source code because
they think it is to early to say what it might be used for. Boards of scientists have formed,
for example the Institute of Life, warning against taking the threat of artificial intelligence too
lightly and advising that more money is spent on investigating the effects and dangers of AI which
currently is a question with much less economic interest than has the development of AI itself.

To conclude, one might never know what algorithms and machine learning models may be used
for, and given that this work is about music, it is evident that there is no current malevolent
purpose and so any use of algorithms in such a way would be a large demise. However, by using
contributions from previous works and designing an architecture with specifically music in mind,
the work is as specialized as possible, and therefore less likely to be used in a negative way than a
more general model of some sort. With this in mind, the source code will be made available to the

4 1 INTRODUCTION

public with the motivation that similar models are already available and the novel contributions
of this work is mostly specific to music.

Automatically generated music is of interest in a lot of places, for example in movies, video games,
elevators and lounges. Aesthetically, music modelling could also leads us in new directions and
give inspiration to head in new ways that would otherwise be unexplored, as well as help us
understand the old masters from a new perspective. A negative aspect then deals with how
artificial intelligence potentially can make some professions obsolete, leading to unemployment, or
harder working conditions, for large groups of people. Composers may not be a large profession
group but most of them likely live under quite difficult circumstances where it is already today
hard to get work and a steady income. However, on a theoretical level, it is not right to stop the
development just to save some groups of professions; it has not worked historically and it will not
work in the future. One might also hide behind a classic argument and state that no matter if
this work makes a progress or not, someone else’s will. Finally, one might also employ a more
positive outlook on things and adopt the view that professions don’t disappear, they just change
form. Alas, as we shall see, the development of neural networks for musical composition gives rise
to a new area of creative work, namely the design of neural networks for music composition.

2 FUNDAMENTALS
This section contains brief theory on music and machine learning with neural networks included
for the purpose of making vocabulary and principles in the rest of this work, especially in the
literature survey, more available to the reader in need of it. Readers who are familiar with both
music theory and neural networks can skip it.

2.1 Music
Everyone is familiar with music but most people do not know music in a formal way. Music can
be considered a vertical and horizontal stream of events where the vertical dimension corresponds
to different voices, sometimes but not always equivalent to instruments, playing at the same time
(one-dimensional in case of a melody only), and the horizontal dimension corresponding to how
the music unfolds in time. Statistically, with respect to the horizontal dimension, later events are
typically conditioned on earlier, that is, we hear repetitions, variations and can keep track of what
the music sounds like based on what we have heard before; a sort of abstract story one might
say. In the vertical dimension, conditioning occurs as well, this being a slightly more complicated
subject which we will derive in this section.

The simplest musical events are in fact, when written down, called notes. A note has several
properties: pitch (height), duration (for how long it sounds), timbre (instrument or characteristic
of the sound), dynamics (strong or soft), envelope (how it unfolds during its duration), timing
(property of the note when it is played live; does it start exactly on time or a little late or early?)
and more. In symbolic music, most of this info is written in the music even though there is room
for personal interpretation as well. The height of a note is called pitch, and it can be given in the
unit Hz, even though we more often discuss pitch within the western tonal system that we have
devised. Here, pitches are placed out in a logarithmic fashion (with respect to wavelength in Hz)
at different intervals on a real axis measuring ascending Hz. The locations are called C, C# / Db,
D, D# / Eb, E, F, F# / Gb, G, G# / Ab, A, A# / Bb, B (sometimes called H). These pitches
could have been placed out at whichever intervals and it is by no means the case that the western
tonal way of doing this is the only correct, even though there are reasons related to consonance
and dissonance to why they are placed out this way. Consonance means that it is pleasant to hear
one or a few notes, dissonance means that it is unpleasant. But what is meant by pleasant and
unpleasant?

Physically, a sound wave is an oscillation with both amplitude and wavelength. The latter results in
the height of the sound and the former in how loud the sound is. A note with a pitch with only one

5

6 2 FUNDAMENTALS

wavelength is called a sine wave. Those do not exist naturally but can be induced by synthesizers.
In reality, sound waves interact and interfere so that a given natural sound really consists of many
wavelengths together. When these wavelengths interfere in certain structured ways, we call it
a pitch whereas when they interfere chaotically, we experience it as noise. Typically, we refer
to the lack of interference between these waves as consonance and the presence of interference as
dissonance (at an increasing scale of course; music contains a lot of dissonances but we still enjoy it).
It turns out that a tone (the sounding result of a note), as we know it, is built up by a fundamental
(from which the pitch of the note is derived) along with an infinite series of overtones, which are
wavelengths that coexist with, and are divisible by (in terms of Hz) the fundamental creating
the sound of a tone. Different instruments sound differently, have different timbres, because they
emphasize different overtones. The overtones fulfill special mathematical properties relative to the
fundamental (such as being doubles, triples etc...) and the higher up in the series you come, the
tighter lie the overtones. This has an important implication for the anatomy of music.

To be correct, when we talked about the fixed locations on the real axis of Hz values, we really
talked about pitch classes, not specific pitches, since there are several, for example, Cs to choose
from. Not all pitches sounds similar, but some pitches sound very similar. These are the pitches
where the other pitch has twice as many Hz as the first (for example, 2000 Hz, 4000 Hz and 8000
Hz) and they sound similar because the fundamental of the second is the first overtone in the
overtone series of the first and the rest of their overtone series coincide to a high degree. These
happen to have the same names in the western tonal system and we refer to all the pitches in such
a series as a pitch class. In reality, the different pitches have specific names, such as C2, C1, C, c,
c2, c3. There are different schools for how to name the pitches, some prefer to use C−2, C−1, C,
C1, C2 and some people even call the pitch classes Do, Re, Mi, Fa, Sol, La, Si (Ti), Do according
to a very old system called solmization. Due to a misinterpretation in the early Germany, B is
sometimes referred to as H and Bb is referred to as B which can be very confusing. Other pairs
of pitches sound slightly less similar because their overtone series do not coincide to the same
degree but still to a quite high degree but maybe the fundamental itself is not an overtone of the
other. The relationship between these pitches are the fundamental idea of the western tonal system
which, in its infancy, favored pitches that were more or less similar in this manner, to achieve a
high level of consonance. Over the years, the patience with the concept of consonance has been
further and further expanded and today, we consider intervals that would have been considered
utterly dissonant back in the Renaissance era, consonant. Actually, we even enjoy dissonance,
but typically when it is in contrast to the very same notion of consonance that the western tonal
system is built on. Thus, our western tonal system can be motivated by its bias toward physically
motivated consonance.

Because of the overtone series, high pitches are conditioned on low pitches to a higher degree than
low pitches are conditioned on high; almost all high overtones, if you go high enough, is included
in any low sounding pitch whereas it sticks out as very upsetting to have a very low dissonance
occurring as a result of two non-consonant base notes.

2 FUNDAMENTALS 7

Each note also has a duration. In reality, in the interpretation of music, players often use so-called
micro-timing and play according to a variable tempo, playing some notes longer than they should,
some shorter, starting some earlier and others later. In the actual written music however, the
duration of a note is very strict and even though, in theory, any length of a duration could be
written down, there is a limit to how small note values will occur in a piece of music. Notes are
furthermore arranged in bars and each bar has a number of underlying "silent" beats. We hear
some actual beats as emphasized whereas others are not. All in all, this results in a so-called meter
which is intimately associated with the number of beats and their emphasis in a bar. Another word
for meter is time signature and the most common one is 4/4 whereas another one is 3/4, which
is often used in waltzes. The second number is a duration whereas the first number indicates the
number of such beats, or durations, in a bar (unit of music). When this number is 4, the first
beat is the most emphasized followed by the third. The remaining beats are not emphasized at all.
When that number is 3, the same applies even though it creates another feeling.

Music can be one stream of events where no two events happen at the same time, monophony
(melody), or multiple independent streams of events with no restrictions on interactions, polyphony.
Monophony with several accompanying streams which follow the same duration patterns and are
subordinate to the melody is called homophony. Most western popular music is highly homophonic.

Given the pitch classes and pitches therein, music is further structured by scales, which indicate
sets of pitches that fit well together, and that have been used throughout the history of western
tonal music. The choice of pitches in a scale is ultimately related to the overtone series and also the
way chords, multiple simultaneous pitches with equal durations, are formed. The fact is that the
overtone series plays an important role on many hierarchical levels in music which is manifested in,
for example, the circle of fifths, used to explain the harmonic, or chordal, progressions in western
tonal music. A scale thus has associated with it a set of pitches as well as a set of chords that can
be constructed from those pitches. During the course of a piece of music, one can smoothly change
scale, or key as it is called, which is an action called modulation.

Two pitches have an interval in between them. The interval between any two consecutive Cs is
called an octave and can also be determined by the number of half-steps (a half-step is the interval
between two consecutive keys on a piano, both black and white keys included) that exist in between;
12. Not all scales need to have the same number of pitch classes and a scale with only half-steps
contains 12 scale steps and is called a chromatic scale. Such a scale is not very common but the use
of half-steps in general is common and is called chromaticism. A whole tone scale uses only whole
steps and such a scale has 6 scale steps and is not very common either. The pentatonic scale has 5
scale steps and is often used in blues and jazz. The basic western tonal scales are called diatonic
scales, because they have both half and whole steps in them, and have 7 steps. Two particular
scales are called major and minor scales and differ in the distribution of half and whole steps; a
major scale has a series of 1, 1, 1

2 , 1, 1, 1,
1
2 steps from the start pitch whereas the minor scale

has a series of 1, 1
2 , 1, 1,

1
2 , 1, 1 steps. If the scale wrap around, we can see the the major scale

has the same distribution as the minor scale starting from the third step. The minor scale thus is

8 2 FUNDAMENTALS

related to the major scale on the third step in that they share pitch content. This is a common
relationship in western tonal music and we say that A minor is the relative minor to C major and
vice versa. A scale defines the base content of the music but it does not mean that we can not
use any other pitch material at all; to the contrary, other non-scale pitches can be used to create
contrast but the overall material and structure is traditionally from the scale.

All scales of a certain type have the same ordering of half and whole steps but begin on different
pitches. Because not all instruments have the same range as a piano (especially not the voice) there
are more than one major and minor scale; perhaps we need to shift the entire range of a melody
a few steps up or down. Such an action is called transposition and it is often done for singers for
example if the highest note in a given piece is too high; the piece is then transposed down until
the highest note is within the range of the singer’s voice, perhaps going from being in G major
to E major. Most people can easily transpose on the fly when singing but the same most often
requires new notated music when it comes to other instruments. The property of music being the
same when transposed is called transposition invariance and the same does not go for languages.
Consider the word "WORD". Transposing it one "step" up yields "XPSE" which does not mean
the same thing to us as does "WORD".

Ultimately, the spacing between pitches in the western tonal music is a compromise between the
overtone series (consonant intervals are the basis), physical limitations (one can’t play a piano
with 400 keys) and pitch density that allows for a slight room between consonant intervals. The
tuning used in modern pianos is a compromise between all different keys (as in scales) that must
be playable on the piano and earlier in history, there were tunings that resulted in a C major scale
that sounded more consonant than it does today but with, in effect, an unplayable F# major.

Music is further put together according to schemes which are typical for different traditions. In
western tonal music, which is the tradition that most of our western music today stems from, or at
least is highly influenced of, tones form melodies and chords form progressions of harmonies. These
are put together in motives which form phrases and themes which, in turn, form larger building
blocks (Lousseief, 2015). Music thus has a highly hierarchical structure.

2.2 Neural Networks
Artificial Neural networks (ANNs or NNs), called neural networks informally, is a class of machine
learning algorithms inspired from the human nervous system that were first thought of in the
middle of the 20th century. A great deal of theory was laid forward early but throughout time,
neural networks suffered from two big setbacks after which followed time when little or no interest
was invested in them. The first problem arose early on when it was thought that a neural network
could do no better than a linear discriminator. This was solved by adding more layers. The
second setback became apparent in the 90’s when it was believed that training neural networks
was almost impossible. The answer to this problem was the backpropagation algorithm and the

2 FUNDAMENTALS 9

use of differentiable activation functions instead of the step function. Alas, both of the setbacks
were remedied in some time and today, this large class of algorithms represent the state of the art
in the machine learning field.

Artificial Neural Networks have many different forms but its base component is an abstraction of a
neuron that outputs a value after having received weighed inputs from input data or other neurons.
Imitated from the human nervous system, the neuron can also have a so-called activation function,
a non-linear function, that introduces a non-linearity in the otherwise linear combination of inputs
that would otherwise restrict expressiveness. Common activation functions are tanh, sigmoid and
ReLU (Rectified Linear Unit). In the basic neural network, sets of neurons are placed in layers
where all the neurons in one layer only receive weighed input from all the neurons from the previous
layers. Such a network is called a feedforward network. In some specific networks (typically older
ones such as Hopfield networks and RBF networks), there are connections between neurons in a
layer but that is typically not the case in the vanilla network. A notable exception to this rule
are recurrent neural networks (RNNs), used to model sequences whereby a recurrent state layer
with self-connections is used to account for temporal context. The layer where the data is fed to a
network is called the input layer and the layer where the output of the network is read is called the
output layer. All layers in between are called hidden layers and may have more or less specialized
functions depending on the type of network. As a general rule, the expressiveness of the network
increases as more layers and neurons are added. A collective name for ANNs with more than one
hidden layer is deep neural networks (DNNs).

The main components used to train a neural network are input data, target data (the desired
output of the network that we train with), the network itself and a loss function. The loss function
gives some measure of how well the network predicts the target data given the input data, with the
goal that it should predict it well. Using the derivative of the loss function, the backpropagation
algorithm iteratively updates the weights of the network which successively makes better and better
predictions. In some scenarios, the network may overfit, which means that the network adapts too
well to the actual training data and loses the ability to generalize what it has learned on other data.
For this purpose, a validation set, not part of the training data, is used to test the model every
now and then to see whether it still has its generalization capabilities or not. ANNs are usually
trained with a number of training patterns in parallel, a batch. Batch sizes are typically powers of
two and when all the training data has been processed, the training has gone through an epoch.
For every batch there is a weight update which is why counting batches can also be referred to as
counting steps.

The field of artificial neural networks is old but it has flourished in the last decades thanks to a
series of progressions, for example in the form of more efficient algorithms, more available training
data and better computing resources.

Now follows a list of more particular types of networks, or training setups, along with brief expla-
nations.

10 2 FUNDAMENTALS

• Feedforward Neural Network (FFNN) or Multilayer Perceptron (MLP):

Feedforward networks might refer to both the category of neural networks that are not recur-
rent, and as such, may include a large variety of network architectures. However, feedforward
networks may also refer to the simple, previously described, vanilla neural network, with feed-
forward layers with input, output and zero or more hidden layers in between, also known as
multilayer perceptrons.

• Simple Recurrent Network (SRN):

Simple recurrent networks are early RNNs with a simple formulation and were used before the
equations of the RNN, as we know them, got entirely standardized. Typically, these networks
are used liberally with custom configurations of fixed weights and modelling aspects built into
the architecture. Two types of SRNs, Jordan and Elman networks, are used which differ only
subtly. Both of them usually have three layers where the middle layer consists of hidden units.
The output layer is connected to the input layer to provide for sequential data. In a Jordan
network, the input layer has recurrent self-connections, providing context relative to the
sequential nature of the data, whereas in an Elman network, the recurrent connections occur
in the hidden layer. As with regular RNNs, teacher forcing, the principle where a recurrent
network is fed target output values from the last time step instead of the actual output, is most
often applied even though not always mentioned. SRNs were first trained by weight updates
at every time step by comparing the target and output. Later, adaptations from the regular
backpropagation algorithm brought about backpropagation through time (BPTT), the most
common algorithm for recurrent networks in general, as well as alternative algorithms such as
real time recurrent learning (RTRL) which is less common. Informally, there is no strict line
between regular RNNs and Elman networks with recurrent connections in the hidden layer
and with no time-typical customizations or inputs, there is no difference. What is implicated
here is that an Elman network that only accepts as input the actual data sequences, where
both the input layer and the output layer are fully connected with learnable weights to the
hidden layer, is actually the same as what is later referred to as a vanilla RNN.

• Recurrent Neural Network (RNN):

As with feedforward networks, recurrent neural networks (RNNs) is an expression that can
be used to refer to several things. Its broadest use defines any neural network that models
sequences and holds some sort of state as a result of this, in which case, an RNN can refer to
an SRN, an LSTM (introduced below) or an actual architecture, being the most standard and
regular among these recurrent networks. The RNN as a model is in essence a standardized
SRN (more specifically an Elman network) which can be distinguished from an SRN in several
aspects. First of all, it is said that SRNs have context units whereas RNNs have a hidden
layer with a hidden state. Furthermore SRNs are often customized in the network itself,
for example by partial connectivity between layers or fixed weights, in an attempt to guide
the model whereas the plain RNN is assumed to have full connectivity between layers as all

2 FUNDAMENTALS 11

weights are learnable. Finally, SRNs are often conditioned with additional, non-learnable,
inputs (plans) whereas by default, RNNs are typically trained with the input sequences only.
Thus, the differences lies in idiomatic use and terminology rather than in the theory and, as
is said in the section on SRNs, an Elman network without these additions is effectively the
same as a vanilla RNN. A historical difference is also that SRNs are often illustrated with
all neurons in each layer, clearly showing how recurrent connections work whereas RNNs (all
sorts) tend to use the abstraction of one node with a recurrent arrow for such a layer which
can sometimes cause confusion among beginners who mistake the node for one neuron only.

5,000 10,000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

steps

probability

Figure 2.1: Probability of sampling
from output predictions instead of tak-
ing the next input from the ground
truth (teacher forcing) as a function of
global training steps when using sched-
uled sampling. The blue graph shows
an inverse sigmoid schedule with rate
1000 and the red graph shows a linear
schedule with rate (linear coefficient)
0.000025

An RNN, as a model, thus has an in-
put layer and a hidden layer. The RNN
input layer is connected to the hidden
layer which has recurrent connections and
holds a hidden state (or context in SRN
terms). At each time step, depending on
what is modelled, the RNN may output
data as well which is typically done by
connecting the hidden layer to an out-
put layer. In this type of modelling,
the output from one time step is often
the input to the next, but during train-
ing, teacher forcing is usually employed
whereby the correct target is fed as input
to the next time step instead of the one
that was actually predicted during train-
ing. Teacher forcing is said to speed up
learning, and works well given that the
network learns to predict the right tar-
get eventually. However, if this doesn’t
happen, the performance of the network
during training (with teacher forcing) and
during inference (full reconstruction) may
differ largely. This can be avoided in part by using curriculum learning strategies such as
scheduled sampling where the teacher forcing is gradually replaced with next step inputs that
are sampled from the network’s own predictions (Bengio et al., 2015).

RNNs are typically used for continuous classification or regression, in which case the output
corresponds to a class or a real value, or in a sequence to sequence (seq2seq) context, where
the hidden state after the last input of a sequence is used as a summary of the entire sequence,
and used as input for some subsequent process. RNNs are typically trained, as SRNs, with
either backpropagation through time (BPTT), which can be thought of as unfolding the
recurrent network over all its time steps into a multilayer feedforward network where the

12 2 FUNDAMENTALS

recurrent weights for the hidden layer are used in multiple layers, or real time recurrent
learning (RTRL), which is less common.

• Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU):

Both long short-term memory (LSTM) and gated recurrent unit (GRU) networks are like
complex RNNs with gates that specifically handles the amount of context information to
forget and the amount of input information to add along with a few other things. The LSTM
maintains two contextual states, a cell state and a hidden state, as opposed to the GRU
(and the RNN) that only maintains a hidden state. The LSTM was developed to remedy
the problem of vanishing and exploding gradients, prevalent in RNNs keeping them from
modelling long-term structure, and does so by adding portions of states to each other. The
addition operator, being less vulnerable to the gradient problems than multiplication, is one
ingredient to this. The LSTM is by no means the only way to extend RNNs with gates to
remedy the gradient problem, even though the first, and much later, the simpler GRU was
invented for the same reason. Also other solutions exist as well as variations on both the
LSTM and the GRU. When comparing the LSTM to the GRU, the former is considered
slightly more complicated which makes LSTMs slower to train. However, since LSTMs are
more complicated, they should be able to express more complicated patterns. Even though
this has not been completely shown, it has been shown that the LSTM, occasionally, manages
to model slightly more complicated patterns than the GRU. This uncertain advantage along
with the certain advantage of shorter learning phases has led to the GRU, not being very old
as of this writing, growing in popularity. Learning in LSTMs, GRUs and friends is done in
the same way as in RNNs and SRNs, and typically includes both teacher forcing and BPTT
(or RTRL).

• Restricted Boltzmann Machine (RBM):

A restricted Boltzmann machine (RBM) is an undirected network with two layers: one hidden
and one visible. The visible layer holds a pattern and the hidden layer is used to discover
latent features. The weights between the hidden layer and the visible layers are the same
when sampling the hidden layer from the visible and vice versa. However, the two layers have
different biases. Working with a trained RBM amounts to sampling the visible layer from
the hidden layer according to some procedure. The model can give samples from a learned
distribution when all the visible nodes are sampled from the randomly initialized hidden layer.
Some visible nodes, however, may be clamped, so that their values are not changed during
sampling, in which case the RBM does pattern completion or prediction according to the
same distribution, given that the clamped units are the context history and the unclamped
nodes are the next values to predict.

RBMs stem from Boltzmann machines (BMs), which are very hard to train, and are restricted
in the way that there is no interconnectivity between nodes in a layer, only between nodes in
different layers. This restriction makes them easier to train since Gibbs block sampling can be

2 FUNDAMENTALS 13

used during training with contrastive divergence (CD), as opposed to regular BMs that have to
be trained with single Gibbs sampling in a process based on simulated annealing. Extensions
to contrastive divergence exists, such as persistent contrastive divergence (P-CD) which does
not reset the state between learning iterations when Gibbs block sampling is performed on
the hidden layer. Contrastive divergence usually comes with a parameter k (resulting in CD-
k) indicating how many rounds of sampling are done before we consider ourselves satisfied
with the sample. Most often this parameter is set to 1 and a single sampling iteration is
performed, however, one should know that the sampling becomes more representative of the
model’s learnt distribution the higher values of the parameter k that is used, even though it
also takes longer time. One way to solve this without any sacrifice is to use P-CD.

• Deep Belief Network (DBN):

A deep belief network (DBN) is a hierarchy of RBMs where the hidden layer of a lower
hierarchy RBM is the visible input of the higher hierarchy RBM. A DBN is trained greedily,
that is, one layer at a time, starting with a single RBM. After this RBM is trained, a new
RBM is added on top of it, taking the former’s hidden layer as input and only the new RBM
is trained. When the depth of the network is satisfactory and training is done, the entire
net can be trained anew with small adjustments using gradient descent. DBNs often have
sigmoid belief networks (SBNs) as higher hierarchy networks and an RBM only at the deepest
layer. DBNs are used like trained RBMs, albeit with a higher representational power due to
the number of layers.

• Sigmoid Belief Net (SBN):

Sigmoid belief nets are similar to RBMs (and BMs) but different in that they are directed
graphical models, as opposed to the latter. Originally, SBNs had hidden and visible nodes
which were arranged in two parallel models: the recognition model consisting of the weights
from visible nodes to hidden nodes, and the generating model, consisting of the weights
from the hidden nodes to the visible nodes. The idea is that the network should be trained
with visible patterns so that the generating model with high probability generates patterns
similar to those that it has been trained on. This can be done in different ways but a
common technique is the so-called wake-sleep algorithm which has two phases, much like
the training algorithm for RBMs. In the wake phase, the recognition model is trained and
in the sleep phase, the generating model is trained after which weight updates take place.
SBNs are inspired from Bayesian networks with expert knowledge posing as hidden nodes
and information (verdicts or conclusions) posing as visible nodes. Several versions of SBNs
exist, such as the fully visible sigmoid belief net (FVBSN) which has no hidden nodes.

• Neural Autoregressive Density Estimator (NADE):

A neural autoregressive distribution estimator (NADE) is a graphical directed model with a
tractable density for which it is possible to calculate exact gradients. It is inspired from RBMs
and FVSBNs and is an improvement over these architectures which have to be trained more

14 2 FUNDAMENTALS

or less heuristically. A NADE models a distribution according to some arbitrary ordering
and models each variable conditioned on the previous ones (P (xt | x1, x2, x3, ..., xt−1)).

• Autoencoder (AE):

Autoencoders have as training objective to reconstruct the input at the output and is, as
opposed to most previous architectures, an example of unsupervised machine learning where
no manually given targets are handed as part of the training procedure. Between the input
and output layers sits one or several hidden layers where the innermost has fewer units than
all other layers. This layer acts as a bottleneck and if the autoencoder manages to train
properly, the contents of this layer, after input has reached it, acts as a compressed version
of the input. Trained autoencoders can also denoise by supplying corrupted input or input
with missing parts whereby the autoencoder can reconstruct the pattern closest to it. The
dimension of the compressed code of the autoencoder is called its latent space, and it is
highly unstructured, meaning that if we unhook the encoding part of the autoencoder and
just sample from its latent space and reconstruct what we sample, latent vectors that are
close to each other don’t necessarily yield reconstructions that are similar.

• Variational Autoencoder (VAE):

Being published independently by two different sets of authors, variational autoencoders
(VAEs) were invented in 2014. A VAE is an autoencoder with its bottleneck replaced with a
multivariate Gaussian distribution parameterized by the final outputs from the encoder layers.
For reconstruction, a latent vector is sampled from this distribution and after training, the
VAE has a latent space that is structured, unlike the autoencoder. A VAE is trained with
both a reconstruction loss (the same as the standard autoencoder) and another loss that
forces the latent space to be structured, acting as a regularizer on top of the regular training.
This other loss is often called KL loss (from Kullback Leibler) since it is calculated from the
KL divergence between the distribution of the sampled vector and a multivariate standard
Gaussian. The two losses sometimes need to be weighed against each other depending on the
problem context and the desired outcome, usually sacrificing the landscape of the latent space
on behalf of the reconstruction quality. One way to weigh the KL loss is to use the free bits
extension, whereby the KL loss is only taken into account whenever it is larger than a certain
threshold (Kingma et al., 2016). β-VAE is another way, introducing the β weight that
scales the KL loss, possibly according to some annealing scheme (Higgins et al., 2016).
The idea with an annealing scheme is to let the VAE focus on reconstruction quality early
in the training process, when training can go in many directions, and introduce the KL loss
successively as training progresses.

After training, sampling and reconstructing from the latent space yields samples from the
distribution of the dataset it was trained on.

• Convolutional Neural Network (CNN):

2 FUNDAMENTALS 15

In a convolutional neural network (CNN), there are convolutional layers in which a convolu-
tion, or a patch, with the number of weights as specified by the size of the convolution, is
moved around the input yielding an output value for every position. The output is calculated
from the dot product with the input at the position of the convolution, followed by a non-
linearity. Each convolutional layer may have several convolutions, or filters, that processes
the input and each outputs an output map, results in outputs with several channels if more
than one filter is used. Each filter has its own weights and the reason why the depths is
referred to as channels is because convolutional layers was initially used on 2D images where
each data point was a pixel with depth 3, since there are 3 channels (R, G, B) per pixel.

• Generative Adversarial Network (GAN):

A generative adversarial network (GAN) network is often illustrated by the notion of a game
with two players where the first player, called the Generator, attempts to generate data that
the other player, the Discriminator, cannot distinguish from real data. This game is main-
tained until the so-called Nash equilibrium is found and during training, the Discriminator
is trained with both fake and real data and both models are updated successively until the
Generator has reached a desired level. GAN networks are hard and unpredictable to train
and much effort has been put into improving the training procedure. Some GAN networks
have showed very impressive results and it is said that even though the VAE offers possibili-
ties that GANs doesn’t, the latter often produce better generative results that looks slightly
more like the original data than the VAE does.

3 LITERATURE SURVEY
In this section, the history of algorithmic composition will be treated. A brief overview is first given
from a historical perspective after which the focus will be shifted towards algorithmic composition
on computers and more specifically with machine learning and neural networks whose development
caught on in the 80’s. At the end of this chapter, there is a brief summary that captures the most
important aspects and streams.

The idea of music composition can be broken down and analyzed; the uninitiated might see it
as a divine gift whereby inspiration arrives to the composer via some sort of supernatural power
channeled through her pencil and forever captured in writing for the world to admire. However,
probably all composers have at some point considered and reflected on the notion of systematic
composition and craft which is more convenient whenever inspiration fails you. The truth of
it is that music composition can be considered an algorithmic process all together, even in the
romantic setting presented earlier, however more or less intuitive or conscious. The reader should
be reminded of the fact that it is often said that music and math are intimately related, as stated
by Ligeti in the quote in the opening of this work.

Also good to reflect on at this early level is the implication of composing by means of a system;
allowing a computer to compose autonomously amounts to somehow supplying a system for the
computer to compose by, after which the computer forms the composition by carrying out the tasks
as specified by the system. There is, however, no intrinsic difference in notion between setting up a
system manually and executing it by hand yielding a composition, and programming a computer to
somehow do the same. Another philosophically intriguing question is whether there is a difference
between recognizing and composing qualitative music. The connection to algorithmic composition
becomes obvious in the context of a random music piece generator which a composer can choose
to save pieces from that she recognizes as qualitative. Who is the rightful composer here? The
composer or the recognizer (Jacob, 1996)?

17

18 3 LITERATURE SURVEY

3.1 Historical Notes
One might have different opinions on what constitutes the earliest example of algorithmic compo-
sition, but some argue that the contributions of music theorist Guido D’Arezzo, inventor of the
solmization technique, are most noteworthy. D’Arezzo invented in the 10th century A.D. a tech-
nique for automatic conversion from religious texts to music by associating syllables with different
(perhaps relative) pitches (Nierhaus, 2009).

By the time of Palestrina and the renaissance era of music, there were strict rules in place governing
what intervals were accepted and how different voices would move, relative to one another, in
order for the polyphony of the music to be preserved. Later on, during the baroque era with Bach
and Händel, these rules were expanded and more dissonant sounds were allowed which, in turn,
required even more rules in terms of how dissonances should be resolved. Both of these traditions
are studied in the topic counterpoint (intimately associated with the concept of polyphony) which
often is divided into three sub-topics out of which Palestrina and Bach counterpoint are the first
two. One may consider these systems as rationalized in retrospect and simply motivated by what
sounded best, but the fact of the matter is that there are numerous cases where mathematical
sequences or ratios have clearly been used as a means of guidance in the composition process.
For example in Dufay’s Nuper Rosarum Flores the ratio 6:4:2:3 is heavily emphasized (Edwards,
2011).

Also in the Baroque era, around 1650, Athanasius Kircher wrote in his book Musurgia Universalis
about a mechanical device looking like a wooden box called Arca Musarithmetica (Stange-Elbe,
2015) which was equipped with levers and knobs regulating different musical aspects of the mu-
sic that came out of it. The box offered a way to compose with extra-musical means and the
combinatorial possibilities of the machine were many.

During the classic era of Mozart and Haydn, the so-called musical dice game (Musikalisches Wür-
felspiel) was introduced in which a dice was rolled governing how precomposed pieces of music or
lyrics would be fitted together (Wikipedia, 2018d). Other versions with, for example, playing
cards existed as well and the game was first seen in 1757. It has been suggested that both Mozart
and Haydn made their versions of these games (Wikipedia, 2018d).

In the early 20th century after World War I, there was presumably a strong wish to break with
German music tradition and composers left the romantic sound for a far more dissonant modern
era, reflecting the shattered Europe and disturbing times. One of the earliest pioneers was Arnold
Schönberg who invented the twelve tone system which formulated strict rules governing which
notes the composer may choose from at what time. The basic idea of the system is to get away
from traditional tonality and allow all twelve pitch classes to be equally frequent (Wikipedia,
2018e) resulting in far more dissonant music than what had been seen during the romantic era.
Any political insinuations arising from this equality between the twelve pitches classes are left to
the reader.

3 LITERATURE SURVEY 19

In the 1950’s, avantgarde composers continued to investigate different means of composition, some-
times even more from a philosophical viewpoint rather than a musical one. Two of the most famous
contributors from this time are John Cage and Karlheinz Stockhausen who both involved random-
ness in their music, for which the term aleatoric music was coined (Wikipedia, 2018b). At this
time, randomness, or chance as it was rather called, would be involved in music in a plethora of
ways and it was often in a systematic way that guaranteed a random outcome as far as the compo-
sitional idea was concerned. This, in contrast with for example a painter who seemingly randomly
throws paint at a canvas but might be governed by some intuitive non-random force (Meyer,
1967). There is a similar situation in Stockhausen’s Klavierstücke written between 1952-1956
(Wikipedia, 2018c), where one of the pieces consists of fragments and instructions to the player
with, among others, the urge to start randomly with a fragment and pick dynamics, pitch and more
in the same way (Meyer, 1967). This might seem as random as the example with the painter
and is conversely not random as far as the performer is concerned but in the eyes of the composer,
it is indeed random. One can of course argue that music always contains randomness then, since
interpretation by a performer always involves a certain portion of originality depending on who is
the performer, but this is ultimately a philosophical question. Since composer and performer are
often different individuals, randomness has often been introduced in the compositional process this
way and everything from graphical scores to exact notation but with (systematic) chance involved
has been tried. In one of the most famous pieces by John Cage, 4’33", conducted around the middle
of the century, the pianist simply reads from the sheets but does not allow the piano to make any
sounds. Originally, the windows to the concert hall would be open and so Cage wanted to make
a piece that both contained chance, due to different sounds flowing in through the windows every
time it was played, as well as convey the philosophical remark that everything could be considered
music, not only that which is explicitly broadcast as music (Wikipedia, 2018a). Needless to say,
the piece is often misunderstood. Cage was a Zen Buddhist and describes how he uses the I Ching,
an old Chinese text, as a composition tool and source of randomness (Cage, 1961).

Later in the century, technological advancements such as tape recorders and other audio processing
devices for home use gave rise to new systematic ways to produce music, one example of which is the
minimalist composition It’s gonna rain by Steve Reich in 1965 where sampled speech is repeated
in multiple channels with slight continuous juxtaposition of phase which alters the experience
throughout the rather long piece.

20 3 LITERATURE SURVEY

3.2 The Computer Era
By the turn of the century, the innovation of computers was well-spread and even though these
were not yet available for home use, they could be found in universities lending themselves to be
used by scientists and engineers. It is also in the intersection between science and music that we
find the earliest uses of computers to generate music.

3.2.1 Algorithmic Composition
Executing a computer program that generates music is a process that has had a few different names.
Computer music seems to be a very broad term whereas algorithmic composition or computer-
generated music is more specifically the kind of music that is either generated or generated and
played by a computer, no matter if this is done with a deterministic or stochastic algorithm. Further
expressions that are close to algorithmic composition are evolutionary music and generative music
which both refer to two specific kinds of music that are typically created by computer programs.
Machine improvisation is a term that usually denotes the use of statistical tools to analyze and
further generate new music similar to the learning material. It may be considered a new composition
in the same style or an improvisation on the previous material, maybe in part depending on the
genre of music. Philosophically however, there is no inherent difference between "true" composition
and composition by means of inspiration from other materials (aren’t we all inspired by others?)
and therefore there is no obvious reason to uphold and further root the use of an expression like
machine improvisation.

One objection to even using any of these terms is stated by composer Barlow and he wonders why
we should call the "new" music computer music when we never called the old music pencil music
(Supper, 2001). Alas, the problem of the norm and its impact on deviations from it remains a
problem within all realms.

In this thesis, the term algorithmic composition will refer to any system for music composition
that is typically executed on a computer or involves the use of algorithms from the scientific field
known as information theory (the umbrella under which the field of computer science rests) and
that generates music in some representation.

As in general algorithm theory, it is good to distinguish between deterministic algorithms and
non-deterministic ones; deterministic algorithms always follow the exact same recipe and with the
same input, they always generate the same output. The same does not apply to non-deterministic
algorithms that involve randomness and that may yield different output with the same input on two
consecutive executions. One must be reminded, however, that one way to yield different outputs
from the same deterministic algorithm is to supply different (random?) inputs which do not make
the actual algorithm non-deterministic. With respect to the subject at hand, it is natural that one
wishes for an algorithm candidate to yield different pieces of music every time it is executed.

3 LITERATURE SURVEY 21

3.2.2 Groupings
There are many thoughts on how to group the different ways that a computer can compose au-
tonomously. In one survey over algorithmic composition the following groups of techniques are
listed (Fernàndez and Vico, 2013):

• Grammars

• Symbolic, Knowledge-Based Systems

• Markov Chains

• Artificial Neural Networks

• Evolutionary and Other Population-Based Methods

• Self-Similarity and Cellular Automata

A similar division had been used before (Nierhaus, 2009):

• Markov Models

• Generative Grammars

• Transition Networks

• Chaos and Self-similarity

• Genetic Algorithms

• Cellular Automata

• Artificial Neural Networks

• Artificial Intelligence

Needless to say, the same actual results are presented nonetheless. Yet another survey uses a
slightly different categorization where is also emphasized the problems with using categories since
different methods in different groups can be considered the same (Papadopoulos and Wiggins,
1999).

All of these categorizations uses the generation method to determine which category a certain
method should belong in. This is not necessarily the most important aspect (one might argue that
the result is) and when scrutinized, there doesn’t seem to exist any clear distinction between some
categories. Nonetheless, a similar categorization will be used in this literature survey with neural
networks as a modelling strategy being treated separately.

An alternative categorization emphasizing intention of the method used instead of the method
itself has also been used (Supper, 2001):

22 3 LITERATURE SURVEY

• Modelling traditional, non-algorithmic compositional procedures

• Modelling new, original compositional procedures, different from those known before

• Selecting algorithms from extra-musical disciplines

Even here, of course, ambiguities exist since an algorithm can both be taken from extra-musical
disciplines as well as attempt to model traditional and non-algorithmic compositional procedures.

3.2.3 Contemporary Alternatives Without Neural
Networks

Since musical composition is not an exact science, using a computer to compose can be done in
any suitable way, and only the creativity of the composer sets the limits. We will now take a look
at some general and particular techniques that have been experimented with over the years.

3.2.3.1 The Naive Way

The most straightforward method for algorithmic composition is probably to use books on music
theory and set up a framework of rules for how music should be written; how chords should
progress, how different voices should relate to each other and much more. Such a program would be
elaborate but with a computer, millions of combinations and possible outcomes could be attempted
per second and so it would probably yield some good results. Some kind of randomness would have
to be involved to yield different results every time the program runs. Also, different rules could be
implemented depending on whether we wanted to create music that sounds like baroque music or
European schlager from the 20th century. Finally, a good computer representation of music would
have to be devised.

One can also choose to add a workflow that is somewhat reminiscent of that used during an old-
fashioned compositional process. This was attempted by Jacob where he constructed ideas and
materials by first creating motifs, then phrases and then vary these, much like he would have done
while composing without a computer (Jacob, 1996).

A more computer-oriented way of expressing the above is to say that one attempts to solve a
Constraint Satisfaction Problem (CSP) where we have constraints and try to satisfy as many of
them as we can. One such example is the monumental program CHORAL that can write and
harmonize Bach chorals with high precision. CHORAL is providing output as results to a 350-
constraint CSP (Fernàndez and Vico, 2013).

3 LITERATURE SURVEY 23

3.2.3.2 Mathematics

If the naive way is simply attempting to replicate what has been done, albeit in a new way, one
of the most intuitively appealing ways to introduce a systematic process in one’s composition is
to use mathematics. Of course, mathematics form an important part of some of the methods to
be described further down but it can also be applied arbitrarily in whatever system or manner the
composer wishes. Both Xenakis and Ligeti are said to have included mathematical processes on
different levels in their compositions (Edwards, 2011).

As one survey groups algorithmic composition methods, there was one method that didn’t fit in
any group, namely the use of Discrete Fourier Transform (DFT) to create variations on a piece
(Fernàndez and Vico, 2013).

3.2.3.3 Genetic Algorithms

In genetic algorithms, a population of solutions are generated in each time step and only the best,
according to some scoring function, survive to the next sieving step. This has also been done in
algorithmic composition.

One of the most famous examples of genetic algorithms and evolutionary methods used in algorith-
mic compositions is the project Melomics in which the hardware Iamus manages an ever-growing
population of musical themes and fragments. The system allegedly composed the first piece ever to
have been written without human intervention on October 15 in 2010 and orchestras continuously
play music written by this software (Diaz-Jerez, 2011).

3.2.3.4 Markov Models or Markov Chains

Andrey Andreyevich Markov (1856-1922) started his work resulting in Markov models, used to
model an abstract machine with different states that given a time sequence will transition between
its states with different probabilities, and the relevant discourse in 1906. The transition matrix
(probabilities that transition will occur from one state to another) and initial state vector are
known beforehand and exactly what constitutes a state is variable. In conjunction with music, a
state can be considered the subsequent addition of a specific melodic fragment or pitch, this is up
to the composer. Markov models, also known as Markov processes or Markov chains, where the
transitions only depend on the last state are called first order Markov models but higher orders
exist as well (though first order models are most common). The first order Markov assumption, one
of the fundamental properties of a first order Markov process, is that the transition probabilities
only depend on the last seen state, and no states before that. This assumption is not to be taken
for granted in all situations. Markov model matrices can either be arrived at by random sampling
or by analysis of an existing piece (Nierhaus, 2009).

Hidden Markov models (HMMs) are Markov models where the transition matrix and initial state
matrix are unknown and where so-called emissions are the only component of the model possible

24 3 LITERATURE SURVEY

to inspect. In such a setting, the emissions are considered the musical property that one wants to
generate and by using some well-known algorithms (forward-backward algorithm, Viterbi algorithm
and Baum-Welch algorithm) one can after every single inspected emission determine a most likely
underlying hidden Markov model to explain the observations.

Both hidden and regular Markov models have been used to generate music. Markov models in
general were first used in connection to music by Harry F. Olsen and Henry Belar inventing the
world’s first synthesizer (Nierhaus, 2009). In the Illiac Suite, the world’s first composition by
a computer named after the Illiac computer in Chicago, both generative grammars and Markov
models were used (Nierhaus, 2009). The suite is divided in four pieces called experiments, and
in the fourth experiment, the conductors of the experiments, Lejaren Hiller and Leonard Isaacson
describes in how they looked in to Markov processes of orders zero, one and even higher (Hiller
and Isaacson, 1959). Later on, Iannis Xenakis, being both an engineer and a composer, used
Markov models in his composition as well. For example in Analogique A., first order Markov chains
are used to determine the order of segments (Nierhaus, 2009). Xenakis has also himself given
insight into how he uses Markov processes (Xenakis, 1992). The first HMM used for algorithmic
composition was deployed in 2001 by Farbood and Schoner (Fernàndez and Vico, 2013).

Using Markov models as a tool for algorithmic composition has been well experimented with ever
since the days of Lejaren, Hiller and Xenakis and today, they form the basis for music generation
programsM and Jam Factory (Jacob, 1996). One stated opinion, however, is that Markov chains
do not account for a good alternative for algorithmic composition and that low order models gave
rise to "strange, unmusical compositions that wandered aimlessly". High order models on the other
hand are computationally expensive and more or less mimics the music on which the Markov model
was trained (Fernàndez and Vico, 2013).

Much later, a variable length Markov model called prediction suffix tree (PST) was invented and
has also been used for algorithmic composition (Ron et al., 1996).

3.2.3.5 Grammars and L-Systems

Grammars are used to define the hierarchical rules of some form of language and are therefore
also well suited to define music (Nierhaus, 2009). There is a large number of different types of
grammars, some involving randomness, non-determinacy and recursion where some symbols may
lead to entirely new grammars, suitable to model hierarchical phenomenons. Since grammars can
be used to define a language, they may also generate strings of the language by simply randomizing
or by other means determining a set of symbols occurring in the grammar. These may then be
successively replaced as suitable according to the rules of the grammar. One idea is that music
follows patterns, often both on a large and small scale simultaneously and, intuitively, by using a
grammar with a logic derivation order in it, these patterns have a good chance to occur. In the
previously mentioned Illiac Suite written in 1956, grammars are used to generate a part of the
music (Baggi, 1998).

3 LITERATURE SURVEY 25

One particular kind of grammar is the L-System described by Lindenmayer originally meant to
model the structure and growth of biological entities (Lindenmayer, 1968a, Lindenmayer,
1968b). L-Systems exist in different types and differs from regular grammars in two ways. First of
all, there are no terminals which means that a token can be expanded forever resulting in an infinite
number of combinations of symbols (Nierhaus, 2009). Also, in an L-System, expansion takes
place in parallell and multiple symbols are expanded at once as opposed to sequential expansion. L-
Systems later got graphical interpretations and can give rise to trees and plants that look extremely
realistic. In 1986, Prusinkiewicz extended the use of L-Systems and showed how they can be used to
generate music (Prusinkiewicz, 1986). The method is rather arbitrary and in the same way as
L-Systems can be interpreted graphically, Prusinkiewicz shows that by assigning musical meaning
to symbols, music can be generated. Several L-Systems can be connected to account for multiple
dimensions of music such as chords, dynamics, rhythms and more and by using other versions of
L-Systems, randomness can be introduced in different ways. One of the first to use L-Systems in
musical composition was the composer Kyburz in the piece Cells written in 1993-1994 (Supper,
2001).

Worth to mention is also Experiments in Musical Intelligence (EMI) which is a system presented by
David Cope starting in 1981 (Nierhaus, 2009). Cope related his work to a musical Turing test
and thought about the compositional process as changing existing material by means of rearranging
order and reconstruct smaller building blocks in a similar manner. The work was done using
transition networks which in its essence is a graphical automata-based representation of a grammar
where a network consists of many subnetwork which each corresponds to treatment of a non-
terminal or terminal grammar symbol. Much like today’s neural networks, input training data
was used and broken down into small fractions from which systematic reconstruction using similar
ideas and properties could take place along with rearrangement of these pieces.

Another system presented in 2015 is based on principles of splicing (De Felice et al., 2015).
Splicing occurs biologically in DNA whereby two strains are cut and form two new strings by
switching parts with each other. A splicing system consists of an alphabet, an initial set of words
and a set of splicing rules which can act recursively on the initial set of words, adding new words
to the vocabulary continuously. The authors use 4-part chorales and chords as words and combine
them using splicing to form new words. After some time, they choose the word, corresponding to
a composed choral, by using a fitness value for generated words. The same authors later refined
their system by adding more complex musical information to the splicing rules (De Felice et al.,
2017).

Under this paragraph, one may also mention fractals which are geometric shapes that are found
in nature and that show structure and repetition on both macro and micro levels. They have a
mathematical foundation and may be and have been used for musical composition purposes.

26 3 LITERATURE SURVEY

3.2.3.6 AI Algorithms

Even though the term artificial intelligence (AI) is somewhat ambiguous and many of the different
progressions in algorithmic compositions that have been made in computers in the past may fall
under this category, the classic AI algorithms involves, but are not restricted to, the search for
solutions in for example combinatoric board games or path finding when the solution space is
huge. Often both heuristics and backtracking is employed to narrow down the set of solutions and
provide some systematic way of searching all solutions within some smaller subspace. For example,
Gill used in 1963 an AI approach to compose twelve-tone melodies where backtracking was used
to satisfy a set of predetermined rules (Fernàndez and Vico, 2013).

3.2.4 Modelling Music with Neural Networks
Artificial neural networks were developed around the middle of the 20th century and were first
used in connection with music in the 70’s and 80’s to classify music (Nierhaus, 2009). At the
end of the 1980’s, the connectionist paradigm, as the approach to use neural networks was called
at the time, began to get attention as a promising choice for modelling cognitive processes. Lischka
describes in 1987 an abstract cognitive model for creative musical tasks and he confirms that the
new connectionist approach is superior to earlier symbolic (grammar) approaches (Lischka, 1987,
Lischka, 1991). A simple example with a Boltzmann machine classifying harmonic functions
based on present pitches is showed and Lischka argues that the neural networks, being inspired by
a real cognitive system (neurons and the brain) can manage to learn rules that are less specific and
concrete than what is necessary for a symbolic system to perform well.

The era of neural networks and music modelling can roughly be divided into three periods. In
the first part (1987-2001) (here referred to as the early era or period), SRNs were largely used
with hand-crafted data and very small training sets. Listening samples are missing and evaluation
is often neglected. During this period, much is focused on guiding the networks with respect to
both data representation, conditioning on extra inputs and network connectivity (fixed weights
and partial connectivity for example). The second part (2002-2011) (here referred to as the middle
era or period) begins with Eck and Schmidhuber using the, by then, new LSTM architecture for
blues music (Eck and Schmidhuber, 2002). This is a middle era during which the equations of
the RNNs and LSTMs had been completely established and subsequently, these architectures are
heavily used whereas we, consequently, see less of SRNs. Some researchers start to investigate other
architectures as well and the tendency is to go towards a more formalized training and evaluation
procedure. Listening samples online are now becoming more common. The third period (2012-
now) (here referred to as the recent era or period) is a time where all sorts of architectures are
tried. This period begins with Boulanger-Lewandowski et al. who set a baseline on a number
of datasets which they also release preprocessed versions of (Boulanger-Lewandowski et al.
(RNN-RBM, RNN-NADE), 2012). As a result, music modelling becomes a benchmark and
the trend to try out all sorts of improvements on recurrent models, using the baselines (and often

3 LITERATURE SURVEY 27

also the mentioned preprocessed datasets) of this publication as a reference, gains in popularity.
Researchers dealing with music as a benchmark only often test their models in several different
fields (language is also a popular choice) in parallel and as far as music is concerned, only measure
the test set results for comparison with previous baseline. Thus, the compositional capabilities
of these models are not tried out to any further extent and in the section to come, these models
are not referenced in all sections in the same way as models that purposely aim to model music.
This is also because these publications use input and data representations that are copied from
the baseline publications which they are trying to beat, and thus, contribute with no novelties in
these areas. Subsequently, the mentioned datasets fast becomes a new standard in an era where
large training sets, automated preprocessing and listening samples available online is the standard.
During this period, the paradigm is that networks are trained end to end with music, as is, thus
with a minimum amount of guidance.

This section is intended to give a fairly detailed overview over how neural networks have been
used for generative musical tasks. Because inspiration and valuable insights into how data is
processed and music is modelled may be acquired from other different problem contexts involving
music; these tasks are not necessarily of purely compositional nature. Because of the large body
of treated material, this section is divided into sections treating different, fairly specific, aspects of
task procedures to give the reader a better and more insightful overview. The chosen division is
by no means the only suitable and in the currently only survey on algorithmic composition with a
large focus on neural networks, the following perspectives are used instead (Briot et al., 2017):

• Objective

• Representation

• Architecture

• Strategy

In this literature survey, all processed material has been considered with twelve aspects in mind:

• Application / Purpose: what is the primary purpose of the model?

• Domain: what representation of music is being modelled?

• Musical domain: what are the limitations of the music being modelled?

• Genre: what musical genre is modelled?

• Input representation: what is the representation of the music before it enters the prepro-
cessing?

• Data representation: what is the representation of the music internally as it is processed
by the network (e.g. after preprocessing)?

28 3 LITERATURE SURVEY

• Model / architecture: what does the layout of the model look like and what sets it apart
from other models?

• Frameworks: what preprocessing or machine learning framework have been used, if any?

• Datasets: what datasets have been used?

• Evaluation: how is the model evaluated?

• Source code: is the source code available and if so, where?

• Samples: are there generated or recorded samples available and if so, where?

Where convenient, these facets have been further divided into exhaustive sets of categories to
further give an efficient demonstration of the variety.

As a final remark, one might think of traditional and deterministic algorithms as tools which we
have to encode ourselves whereas with neural networks, depending on how we model things, there
is a chance that the network can discover latent factors that we are unaware of. Thus, one might
say that algorithmic composition potentially takes a step from being a tool for making music
towards becoming a composer, capable of discovering latent aesthetic patterns and acting more
independently of the programmer, with the introduction of neural networks.

3.2.4.1 Application / Purpose

Music has been modeled with neural networks for other reasons than composition, even though this
purpose has been one of the most common. In this section, the high-level function that we wish
for a model in question to fulfill, and which is subsequently evaluated, is discussed. Some models
can perform several tasks depending on the mode of operation and some models could potentially
perform several tasks but are only used for one. In the latter case, the model will, as previously
indicated, only be listed under the subcategory that it was actually evaluated with respect to.

• Composition:

The large corpus of material regarding music modelling with neural networks describes models
that should be able to compose melodies (Todd, 1988; Todd, 1989; Mozer (CON-
CERT), 1990; Lewis (CBR), 1991; Mozer and Soukup (CONCERT), 1991;
Tsang and Bellgard (EBM), 1992; Bellgard and Tsang (EBM), 1994; Nishi-
jima and Watanabe (Neuro-Musician), 1993; Chen and Miikkulainen, 2001;
Franklin (CHIME), 2001; Franklin, 2004; Franklin and Locke, 2005; Verbeurgt
et al., 2004; Franklin, 2006; Franklin, 2005; Corrêa et al., 2008; Bickerman
et al. (RBM-provisor), 2010; Coca et al., 2011; Bretan et al., 2016; Colombo
et al., 2016; Jaques et al. (RL Tuner), 2016; Sturm et al. (char-rnn, folk-
rnn), 2016; Sun et al., 2016; Agarwala et al., 2017; Chen et al. (FusionGAN),

3 LITERATURE SURVEY 29

2017; Colombo et al. (DAC), 2017; Guimaraes et al. (ORGAN), 2017; Had-
jeres et al. (GLSR-VAE), 2017; Hadjeres and Nielsen (Anticipation-RNN),
2017; Jaques et al. (Sequence Tutor), 2017; Roberts et al. (MusicVAE), 2017;
Roberts et al. (MusicVAE), 2018; Tikhonov and Yamshchikov (VRASH), 2017;
Wu et al. (HRNN), 2017; Eppe et al., 2018; Walder and Kim (MotifNet),
2018), a progression of harmonies (Lewis (CBR), 1991; Tsang and Bellgard (EBM),
1992; Bellgard and Tsang (EBM), 1994; Gang and Berger, 1996; Berger and
Gang, 1997; Berger and Gang, 1999; Melo and Wiggins, 2003; Franklin, 2004;
Franklin and Locke, 2005; Choi et al. (char-RNN, word-RNN), 2016) or full-stack
polyphonic music (Melo and Wiggins, 2003; Boulanger-Lewandowski et al. (RNN-
RBM, RNN-NADE), 2012; Goel et al. (RNN-DBN), 2014; Liu and Ramakrish-
nan, 2014; Fabius and van Amersfoort (VRAE), 2015; Gan et al. (TSBN), 2015;
Lyu et al. (LSTM-RTRBM), 2015; Sun (DeepHear), 2015; Vohra et al. (LSTM-
DBN), 2015; Huang and Wu, 2016; Lattner et al. (C-RBM), 2016; Mogren
(C-RNN-GAN), 2016; O’Brien and Román (MusicNet), 2016; Walder, 2016;
Brunner et al. (JamBot), 2017; Johnson (LSTM-NADE, TP-LSTM-NADE,
BALSTM), 2017; Dong et al. (MuseGAN), 2017; Hennig et al. (Classifying
VAE, Classifying VAE+LSTM), 2017; Sabathé et al. (DRAW), 2017; Simon
and Oore (PerformanceRNN), 2017; Ycart and Benetos, 2017; Colombo and
Gerstner (BachProp), 2018; Koh et al. (C-RVAE), 2018; Mao et al. (DeepJ),
2018; Simon et al. (MusicVAE), 2018) sometimes only with a restricted number of
voices (Freisleben, 1992; Goldman et al. (NetNeg), 1999; Hadjeres and Pachet
(DeepBach), 2017; Huang et al. (CocoNet), 2017; Liang et al. (BachBot), 2017;
Roberts et al. (MusicVAE), 2017; Roberts et al. (MusicVAE), 2018). Some mod-
els also provide melody along with a chordal accompaniment (Mozer (CONCERT), 1994;
Tsang and Bellgard (EBM), 1992; Bellgard and Tsang (EBM), 1994; Eck and
Schmidhuber, 2002; Eck and LaPalme, 2006; De Prisco et al., 2017; Lee et al.
(SeqGAN), 2017; Shin et al., 2017; Teng et al., 2017; Yang et al. (MidiNet),
2017) and sometimes with percussion as well (Chu et al., 2016). Composition has also
been done in the audio domain (van den Oord et al. (WaveNet), 2016a; Mehri et al.
(SampleRNN), 2017), or a representation thereof (Sarroff and Casey (DeepAuto-
Controller), 2014; Nayebi and Vitelli (GRUV), 2015; Kalingeri and Grandhe,
2016).

• Classification:

Even though most often, as a sub-task, related to the modelling of composition, pure clas-
sification has also been done which involves solving the problem of modelling music. One
example is chord classification (Laden and Keefe, 1989). Typically however, this task is
often more connected to Music Information Retrieval (MIR) which is a related, but different,
area than that of general machine learning art and more specifically musical composition.

30 3 LITERATURE SURVEY

• Harmonization:

Harmonization is the process of supplying an existing voice with an additional voice (or
voices). Less formally, this often implies supplying a melody with a chordal accompaniment
where each chord appears for a fixed or variable number of time steps. In essence, this is a
pattern completion task (can also be seen as classification) and do not amount to full genera-
tion of music on its own. Supplying a melody with accompaniment has been a common task
in the history of neural networks (Gang and Lehmann, 1995; Gang et al. (HNN),
1997; Gang et al. (HNN), 1999), especially Bach chorale harmonization (Hild et al.
(HARMONET), 1991; Liang et al. (BachBot), 2017) or reharmonization (Had-
jeres and Pachet (DeepBach), 2017) but other chorales as well (Tsang and Bellgard
(EBM), 1992; Bellgard and Tsang (EBM), 1994). Creating counterpoint by sup-
plying a melody with a counter-melody according to the rules of counterpoint has also been
done (Adiloglu and Alpaslan (NeuroComposer), 2007). Harmonization can sometimes
also involve adding ornaments to the different voices making up the harmonized work (Hild
et al. (HARMONET), 1991).

• Variation:

Variation is the act of taking a piece of music and elaborating it, or ornamenting it, in
some sense with the purpose to create something very reminiscent of the original but still
new. Examples are ornamentation of quarter notes by occasional insertion of smaller note
values in between (Hild et al. (HARMONET), 1991) or systematic elaboration of
quarter notes to sixteenth notes in groups of four (Hörnel and Menzel (MELONET),
1998). Another group of systems that accomplish variations, even though they can be seen
as compositions as well, are systems that are designed to trade jazz solos and produce tunes
reminiscent of those produced by the opposite player (Nishijima and Watanabe (Neuro-
Musician), 1993; Franklin (CHIME), 2001). Reconstructing harmonic progressions,
both by replacing single chords but also reworking entire contexts has also been done (Huang
et al. (ChordRipple), 2016). A similar work lets the user, given a chord, predict chordal
context (Madjiheurem et al. (Chord2Vec), 2016). Finally, composing music adhering
strictly to a certain style can be seen as variation in some cases depending on the procedure
(Koh et al. (C-RVAE), 2018).

• Interpretation:

Interpreting music is the action when a musician performs music and bridges the gap between
the musical instruction (notated, symbolic sheet music) and the sounding music. In terms of
machine learning, this amounts to modelling additional properties, aside from actual pitches
and durations, that make music what it is. These properties can, in fact, be written down
in the score (such as dynamics, tempo, accents) but not necessarily (micro-timing, vibrato,
deviations from written instructions). It has not been a common task to encode interpretation
of music only as a main goal but examples exists. One such example models dynamics only

3 LITERATURE SURVEY 31

(Malik and Ek (StyleNet), 2017). However, some model these properties with an equally
large focus on composition as well (Franklin, 2006; Nishijima and Watanabe (Neuro-
Musician), 1993; Simon and Oore (PerformanceRNN), 2017).

• Transcription:

Automatic Music Transcription (AMT) is the procedure of turning a music audio signal into
written music and it is big field on its own. However, a music model may be incorporated into
such a system, to improve its performance. Typically, a trained music model may serve as
a prior through which the initial transcription is filtered (Boulanger-Lewandowski et al.
(RNN-RBM, RNN-NADE), 2012; Sigtia et al., 2014; Ycart and Benetos, 2017),
alternatively, the transcription is retranscribed using the model as a prior (Sigtia et al.,
2014). Such a model is possibly trained in the same way as a model designed to compose
but is used for transcription and is measured thereafter.

• Interactive systems:

Some systems are specifically developed with the idea that a user should be able to guide
some process, thus working in tandem with the trained model, to accomplish something
(Hadjeres and Pachet (DeepBach), 2017; Hadjeres and Nielsen (Anticipation-
RNN), 2017). This is a fairly reasonable idea and even though most systems are designed
to work on their own after training, one must ask oneself whether it is fair to expect a network
to fill such a role?

Systems can also be interactive in other ways. For example, Neuro-Musician and CHIME
are designed to be deployed in so-called adlib sessions where jazz soloists perform a number
of measures of solo after which another player is supposed to answer, in a call-and-response
fashion, by continuing the solo in a similar style (Nishijima and Watanabe (Neuro-
Musician), 1993; Franklin (CHIME), 2001).

In some cases, authors build some kind of additional software for users to try out, and
through which a model of some kind can be manipulated and explored (Sarroff and Casey
(DeepAutoController), 2014; Huang et al. (ChordRipple), 2016; Engel et al.,
2017; Hadjeres and Pachet (DeepBach), 2017; Mao et al. (DeepJ), 2018).

• Other:

Other purposes than the above have also occurred, for example testing whether a reduc-
tionist approach to music is trustworthy by compressing and decompressing symbolic music
(Large et al., 1995; Bretan et al., 2017). Sometimes, the neural network part is just
a subcomponent of a larger system where the remaining system is not based on neural net-
works (Verbeurgt et al., 2004; De Prisco et al., 2017). Other publications show new
techniques improving existing ones by reconstructing timbre in the domain of real audio in
an autoencoder fashion (Engel et al., 2017).

32 3 LITERATURE SURVEY

3.2.4.2 Domain

What is music, the notes written on the sheet by a composer or the sounding result reaching
our ears and filling us with an experience? This section treats what a network, on a higher level
than data representation, is trying to model. In most cases, architectures try to model music
symbolically, namely as an instruction of how to play music. However, attempts to model music as
it sounds have also been done, typically in the domain of audio signals, or transformations thereof.
Depending on which, the resulting learning problems might be very different and requirements of
specific kind might be placed on the model.

• Symbolic:

In the symbolic domain, written music is modelled in some way. The vast majority of all
publications on algorithmic composition with neural networks fall in this category, almost
always resulting in a learning problem with ordered discrete classes corresponding to notes
or chords, much like the learning problems that arise within NLP or image classification.

• Signal:

Modelling the sounding result of music is still relatively new, but has been done in a few
cases. Typically, audio is a stream of events recorded in one or several channels with some
sample rate where each sample corresponds to some data. A common sample rate is 44100
samples per second (44.1 kHz) but lower rates, for example 16 kHz, are common too. Each
sample is typically a 32-bit or 16-bit integer and it is common to merge all channels to a
mono track before modelling.

With a 16 kHz sample rate and 16-bit samples, speech and also music have been modelled in
WaveNet and SampleRNN directly using its wave form (van den Oord et al. (WaveNet),
2016a; Mehri et al. (SampleRNN), 2017; Engel et al., 2017). Worth to point out
is that PCM encoding of 16-bit integers to 8-bit integers were used in these models.

In other cases, audio has instead been transformed using Fourier analysis into spectrograms
which have been modelled instead of the pure audio signal (Sarroff and Casey (DeepAu-
toController), 2014; Nayebi and Vitelli (GRUV), 2015; Kalingeri and Grandhe,
2016). Also Mel spectra have used for modelling (Eppe et al., 2018).

The sounding result of music can also be modelled without using audio signals by taking
into account exactly the aspects of music that an interpreter adds to the experience when
playing, which becomes obvious when inspecting the data representation chosen (Franklin,
2006; Nishijima and Watanabe (Neuro-Musician), 1993; Simon and Oore (Per-
formanceRNN), 2017).

3 LITERATURE SURVEY 33

3.2.4.3 Musical Domain

What aspect of music is being modelled? Music in its entirety, or just music of some structural type?
This parameter is quite diverse historically even though three very common goals are to model a
melody (monophonic music), harmonies or with no restriction (polyphonic music). Sometimes,
music with a melody and chordal background (homophonic music) is the choice of domain. Note
that this section refers to the main musical domain that a model should be able to output, not
what kind of data is being used to accomplish this. For example, some models use harmonies as
conditioning for a melody but the model does not output any chords. Such a model is listed in the
monophonic subsection, even though the way the model represents the chords in the conditioning
might be listed under the relevant subsection in the section about data representation.

• Melody (Monophony):

Monophonic music, or melodies, have been modelled in all times, perhaps more frequently
so in the very early era where a lot of examples exist (Todd, 1988; Todd, 1989; Mozer
(CONCERT), 1990; Lewis (CBR), 1991; Mozer and Soukup (CONCERT), 1991;
Nishijima and Watanabe (Neuro-Musician), 1993; Mozer (CONCERT), 1994;
Large et al., 1995; Chen and Miikkulainen, 2001; Franklin (CHIME), 2001).
Some models work with several voices in a completion mode of operation, which enables
them to provide a melody given a harmonic sequence (Tsang and Bellgard (EBM),
1992; Bellgard and Tsang (EBM), 1994; Hörnel and Menzel (MELONET),
1998; Bickerman et al. (RBM-provisor), 2010). In the middle period, there are
also examples of this musical domain (Franklin, 2004; Franklin and Locke, 2005;
Verbeurgt et al., 2004; Franklin, 2006; Franklin, 2005; Adiloglu and Alpaslan
(NeuroComposer), 2007; Corrêa et al., 2008; Coca et al., 2011). In the recent era,
the modelling of monophony still persists (Bretan et al., 2016; Colombo et al., 2016;
Jaques et al. (RL Tuner), 2016; Sturm et al. (char-rnn, folk-rnn), 2016; Sun
et al., 2016; Agarwala et al., 2017; Chen et al. (FusionGAN), 2017; Colombo
et al. (DAC), 2017; Engel et al., 2017; Guimaraes et al. (ORGAN), 2017;
Hadjeres et al. (GLSR-VAE), 2017; Hadjeres and Nielsen (Anticipation-RNN),
2017; Jaques et al. (Sequence Tutor), 2017; Roberts et al. (MusicVAE), 2017;
Roberts et al. (MusicVAE), 2018; Tikhonov and Yamshchikov (VRASH), 2017;
Wu et al. (HRNN), 2017; Walder and Kim (MotifNet), 2018) even though less
common now. Modelling monophonic music directly from the audio signal has been done as
well (Eppe et al., 2018).

• Harmony:

Harmonies, e. g. sequences of chords, have been modelled, specifically or as a particular
subcomponent of a larger model, in the symbolic domain (Laden and Keefe, 1989; Hild
et al. (HARMONET), 1991; Lewis (CBR), 1991; Tsang and Bellgard (EBM),
1992; Bellgard and Tsang (EBM), 1994; Mozer (CONCERT), 1994; Gang and

34 3 LITERATURE SURVEY

Lehmann, 1995; Gang and Berger, 1996; Berger and Gang, 1997; Berger and
Gang, 1999; Hörnel and Menzel (MELONET), 1998; Gang et al. (HNN), 1997;
Gang et al. (HNN), 1999; Melo and Wiggins, 2003; Franklin, 2004; Franklin,
2005;Franklin and Locke, 2005; Franklin, 2006; Huang et al. (ChordRipple),
2016; Madjiheurem et al. (Chord2Vec), 2016), sometimes framed as a textual problem
(Choi et al. (char-RNN, word-RNN), 2016).

• Melody with chords (Homophony):

Music consisting of an accompaniment that, roughly, progresses evenly according to some
note duration, with a highest voice, melody, that either follows or do not follow the rhythm
of the accompaniment is considered in this section.

One early example is one of the first uses of RBMs in music modelling where chorales were
modelled (Tsang and Bellgard (EBM), 1992; Bellgard and Tsang (EBM), 1994).
In the last version of CONCERT, the model has been extended to use chords as well and can
now model melody and chords as well as melody only, as previously (Mozer (CONCERT),
1994). Some examples focus on melody and chords but with a model that could potentially
model polyphony as well (Eck and Schmidhuber, 2002). One common setup models
melody and chords with different representations but simultaneously (Eck and LaPalme,
2006; De Prisco et al., 2017; Lee et al. (SeqGAN), 2017; Shin et al., 2017). In
some cases, rhythm is added as well (Chu et al., 2016). Melody may also be generated
conditioned on a previously generated chord sequence (Teng et al., 2017; Yang et al.
(MidiNet), 2017).

• Polyphony:

Polyphony here amounts to free movement in more than one voice simultaneously, contrasted
with multiple voices but where all except one belongs to a chord, symbolically or as several
notes. Polyphony is often characterized by counterpoint, which is the musical technique where
no voice, in theory, is more important than any other, thus they all constitute qualitative
melodies. This is in contrast with homophony where the division in lead (or melody) and
accompaniment is apparent. In practice, however, in polyphonic music, the highest voice
often appears as the melody to the listener.

Modelling polyphonic music was done already in the early era modelling two-voice music
(Freisleben, 1992; Goldman et al. (NetNeg), 1999). In the middle era, data repre-
sentations and output procedures that made polyphonic music possible became more com-
mon which was often taken advantage of (Melo and Wiggins, 2003), however not al-
ways (Eck and Schmidhuber, 2002). The boom of modelling polyphonic music with
neural networks belongs to the recent era (Boulanger-Lewandowski et al. (RNN-
RBM, RNN-NADE), 2012; Goel et al. (RNN-DBN), 2014; Liu and Ramakr-
ishnan, 2014; Sigtia et al., 2014; Fabius and van Amersfoort (VRAE), 2015;

3 LITERATURE SURVEY 35

Gan et al. (TSBN), 2015; Lyu et al. (LSTM-RTRBM), 2015; Sun (Deep-
Hear), 2015; Vohra et al. (LSTM-DBN), 2015; Huang and Wu, 2016; Lattner
et al. (C-RBM), 2016; Mogren (C-RNN-GAN), 2016; O’Brien and Román
(MusicNet), 2016; Walder, 2016; Bretan et al., 2017; Brunner et al. (JamBot),
2017; Johnson (LSTM-NADE, TP-LSTM-NADE, BALSTM), 2017; Dong et al.
(MuseGAN), 2017; Hadjeres and Pachet (DeepBach), 2017; Hennig et al. (Clas-
sifying VAE, Classifying VAE+LSTM), 2017; Huang et al. (CocoNet), 2017;
Liang et al. (BachBot), 2017; Malik and Ek (StyleNet), 2017; Roberts et al.
(MusicVAE), 2017; Roberts et al. (MusicVAE), 2018; Sabathé et al. (DRAW),
2017; Simon and Oore (PerformanceRNN), 2017; Ycart and Benetos, 2017;
Colombo and Gerstner (BachProp), 2018; Koh et al. (C-RVAE), 2018; Mao
et al. (DeepJ), 2018; Simon et al. (MusicVAE), 2018) where it is the standard
rather than something ambitious.

In the case of modelling music straight from an audio signal, or a representation thereof,
(Sarroff and Casey (DeepAutoController), 2014; Nayebi and Vitelli (GRUV),
2015; Kalingeri and Grandhe, 2016; van den Oord et al. (WaveNet), 2016a;
Mehri et al. (SampleRNN), 2017), there is no restriction in the musical domain, and
so, if the music is polyphonic, these models fall under here as well.

• Percussion:

Attempts to model rhythmic instruments have also been made, in isolation (Choi et al.
(char-RNN, word-RNN), 2016) or as part of a larger system (Chu et al., 2016;
Roberts et al. (MusicVAE), 2017; Roberts et al. (MusicVAE), 2018), and can be
seen as both polyphony or monophony, depending on what kind of rhythm is modelled.

3.2.4.4 Genre

A lot of publications do not reveal the exact genre of what is trained on, but in hindsight, most gen-
res are considered at some point. In general, publications choose to only use music in common time
or alla breve (subdivision of the measure in four or two) (Eck and LaPalme, 2006; Sun et al.,
2016; Bretan et al., 2017; Johnson (LSTM-NADE, TP-LSTM-NADE, BALSTM),
2017; Malik and Ek (StyleNet), 2017; Roberts et al. (MusicVAE), 2017; Roberts et al.
(MusicVAE), 2018; Teng et al., 2017; Wu et al. (HRNN), 2017) even though counter-
examples to this exist as well (Mozer (CONCERT), 1990; Mozer and Soukup (CON-
CERT), 1991; Boulanger-Lewandowski et al. (RNN-RBM, RNN-NADE), 2012; Lyu
et al. (LSTM-RTRBM), 2015; Simon et al. (MusicVAE), 2018).

The classical genre in general (Boulanger-Lewandowski et al. (RNN-RBM, RNN-NADE),
2012; Goel et al. (RNN-DBN), 2014; Gan et al. (TSBN), 2015; Lyu et al. (LSTM-
RTRBM), 2015; Vohra et al. (LSTM-DBN), 2015; Huang and Wu, 2016; Mad-
jiheurem et al. (Chord2Vec), 2016; Mogren (C-RNN-GAN), 2016; Walder, 2016;

36 3 LITERATURE SURVEY

Bretan et al., 2017; Johnson (LSTM-NADE, TP-LSTM-NADE, BALSTM), 2017;
Hennig et al. (Classifying VAE, Classifying VAE+LSTM), 2017; Malik and Ek
(StyleNet), 2017; Simon and Oore (PerformanceRNN), 2017; Wu et al. (HRNN),
2017; Ycart and Benetos, 2017; Mao et al. (DeepJ), 2018; Walder and Kim (Mo-
tifNet), 2018) and especially chorales have been very popular due to the straightforwardness
and relative complexity. Bach has been a popular choice (Duff, 1989; Mozer (CONCERT),
1990; Hild et al. (HARMONET), 1991; Mozer and Soukup (CONCERT), 1991;
Mozer (CONCERT), 1994; Verbeurgt et al., 2004; Boulanger-Lewandowski et al.
(RNN-RBM, RNN-NADE), 2012; Goel et al. (RNN-DBN), 2014; Liu and Ramakr-
ishnan, 2014; Sigtia et al., 2014; Gan et al. (TSBN), 2015; Lyu et al. (LSTM-
RTRBM), 2015; Vohra et al. (LSTM-DBN), 2015; Huang et al. (ChordRipple), 2016;
Huang and Wu, 2016; Madjiheurem et al. (Chord2Vec), 2016; O’Brien and Román
(MusicNet), 2016; Walder, 2016; Johnson (LSTM-NADE, TP-LSTM-NADE, BAL-
STM), 2017; Hadjeres et al. (GLSR-VAE), 2017; Hadjeres and Pachet (DeepBach),
2017; Hadjeres and Nielsen (Anticipation-RNN), 2017; Hennig et al. (Classifying
VAE, Classifying VAE+LSTM), 2017; Huang et al. (CocoNet), 2017; Liang et al.
(BachBot), 2017; Colombo and Gerstner (BachProp), 2018; Walder and Kim (Mo-
tifNet), 2018) as well as Vivaldi (Coca et al., 2011), Mozart (Freisleben, 1992; Gang and
Berger, 1996; Lattner et al. (C-RBM), 2016; Colombo and Gerstner (BachProp),
2018), Haydn (Gang and Berger, 1996; Berger and Gang, 1999; Colombo and Gerst-
ner (BachProp), 2018), Bartók (Chen and Miikkulainen, 2001), Pachelbel (Hörnel and
Menzel (MELONET), 1998), Prokofiev (Melo and Wiggins, 2003) and Beethoven (Mehri
et al. (SampleRNN), 2017; Sabathé et al. (DRAW), 2017). Counterpoint, as used during
the renaissance, has also been modelled (Goldman et al. (NetNeg), 1999; Adiloglu and
Alpaslan (NeuroComposer), 2007).

Jazz has been modelled as well (Franklin, 2004; Franklin and Locke, 2005; Franklin, 2006;
Franklin, 2005; Bickerman et al. (RBM-provisor), 2010; Choi et al. (char-RNN,
word-RNN), 2016; Chen et al. (FusionGAN), 2017; De Prisco et al., 2017; Malik
and Ek (StyleNet), 2017) which often involves modelling other aspects of the music, such as
dynamics and timing, which are extra important in the jazz genre. This has been done either in
isolation or simply as an extra ingredient in plain modelling of music (Nishijima and Watanabe
(Neuro-Musician), 1993; Franklin (CHIME), 2001).

Often for melody and chords but for other categories as well, different books or datasets with
standard pop, rock and jazz songs have been sources for material (Mozer (CONCERT), 1994;
Bickerman et al. (RBM-provisor), 2010; Bretan et al., 2016; Chu et al., 2016; Huang
et al. (ChordRipple), 2016; Shin et al., 2017; Teng et al., 2017; Wu et al. (HRNN),
2017; Yang et al. (MidiNet), 2017), especially in the early era when it was common with
small training sets and hand-crafted data.

3 LITERATURE SURVEY 37

Blues progressions have been used as training data, appearing as such for the first time in the
middle period (Eck and Schmidhuber, 2002).

Folk music became popular from the middle era and on (Boulanger-Lewandowski et al. (RNN-
RBM, RNN-NADE), 2012; Goel et al. (RNN-DBN), 2014; Sigtia et al., 2014;
Gan et al. (TSBN), 2015; Vohra et al. (LSTM-DBN), 2015; Madjiheurem et al.
(Chord2Vec), 2016; Walder, 2016; Chen et al. (FusionGAN), 2017; Johnson (LSTM-
NADE, TP-LSTM-NADE, BALSTM), 2017; Guimaraes et al. (ORGAN), 2017; Lee
et al. (SeqGAN), 2017; Wu et al. (HRNN), 2017; Colombo and Gerstner (Bach-
Prop), 2018; Walder and Kim (MotifNet), 2018) and Irish folk has been used repeatedly
(Eck and LaPalme, 2006; Colombo et al., 2016; Sturm et al. (char-rnn, folk-rnn),
2016; Agarwala et al., 2017; Colombo et al. (DAC), 2017). Other examples uses Brazilian
folk music (Corrêa et al., 2008). Other traditional music, such as Klezmer (Colombo et al.
(DAC), 2017), has been attempted too.

Some authors like to model their favourite artist, for example David Bowie (Nayebi and Vitelli
(GRUV), 2015), Metallica (Choi et al. (char-RNN, word-RNN), 2016) or favourite genre,
such as ragtime (Sun (DeepHear), 2015) or just piano music, either from different artists
(Kalingeri and Grandhe, 2016; Sun et al., 2016; van den Oord et al. (WaveNet),
2016a) or specific (Lattner et al. (C-RBM), 2016; Bretan et al., 2017).

Modelling video game music has been done as well (Fabius and van Amersfoort (VRAE),
2015; Chu et al., 2016; Koh et al. (C-RVAE), 2018) and work in this genre may be of
special importance as it is sometimes seen as desirable to automate composition of video game
music so that it correlates with the current mood or context of the game. In this spirit, it has
also been attempted to generate music similar to a specific input to the degree that the original,
to model upon, is presented to the generative part of the network, and not as input only during
training (Koh et al. (C-RVAE), 2018).

3.2.4.5 Input Representation

In the early era, due to the often sparse number of training examples used, data used for learning
seem to have been hand-crafted directly from examples. Thus, in this case, there was no separate
input representation. From about the time when training using larger corpora became common,
other types of input data surfaced among which, over the years, MIDI has been the most common
one.

• MIDI:

MIDI (Musical Instrument Digital Interface) was adopted in 1983 and is a standard way of
communicating musical information in computers. A MIDI file contains a stream of events
where two of the more significant events may be that a certain pitch is started (note on) or
stopped (note off). However, there is a large variety of events and the events also contain

38 3 LITERATURE SURVEY

information about what instrument is playing what, at what dynamic level (called velocity)
and much more. MIDI in itself does not model music specifically according to notation
standards and each event contains a number indicating how many pulses have passed since
the last event. To control the speed of the music, MIDI holds information about how many
pulses that corresponds to a quarter note as well as how many microseconds corresponds to a
quarter note, thus a conversion between time, pulses and notated music is possible. Without
restrictions during MIDI recording, the resulting music is not necessarily easily transformable
into valid sheet music and given the granularity of the number of pulses per quarter note,
micro-timing in the sense of being slightly late, or early, which is often the case in live music,
is possible.

One of the absolutely earliest cases of using MIDI when modelling music with neural net-
works was in Neuro-Musician where the input of a jazz soloist, in real time, was fed to the
model as MIDI and converted on the fly to the chosen data representation after which the
output was converted back to MIDI and played on a speaker (Nishijima and Watanabe
(Neuro-Musician), 1993). CHIME is a system that have followed in its footsteps since
using the framework Sound2Midi for the live conversion (Franklin (CHIME), 2001).
From the middle era, MIDI becomes more and more common (Eck and LaPalme, 2006;
Adiloglu and Alpaslan (NeuroComposer), 2007; Coca et al., 2011). Franklin then
uses both KeyKit (Franklin, 2006) and Band in the Box for MIDI input preprocessing
(Franklin, 2006; Franklin, 2005). The MIDI trend then continues into the recent era
(Boulanger-Lewandowski et al. (RNN-RBM, RNN-NADE), 2012; Goel et al.
(RNN-DBN), 2014; Liu and Ramakrishnan, 2014; Sigtia et al., 2014; Fabius
and van Amersfoort (VRAE), 2015; Bayer and Osendorfer (STORN), 2015;
Gan et al. (TSBN), 2015; Lyu et al. (LSTM-RTRBM), 2015; Vohra et al.
(LSTM-DBN), 2015; Choi et al. (char-RNN, word-RNN), 2016; Chu et al.,
2016; Huang and Wu, 2016; Jaques et al. (RL Tuner), 2016; Lattner et al. (C-
RBM), 2016; Madjiheurem et al. (Chord2Vec), 2016; Mogren (C-RNN-GAN),
2016; Sun et al., 2016; Walder, 2016; Bretan et al., 2017; Brunner et al. (Jam-
Bot), 2017; Colombo et al. (DAC), 2017; Johnson (LSTM-NADE, TP-LSTM-
NADE, BALSTM), 2017; Dong et al. (MuseGAN), 2017; Guimaraes et al.
(ORGAN), 2017; Hennig et al. (Classifying VAE, Classifying VAE+LSTM),
2017; Huang et al. (CocoNet), 2017; Jaques et al. (Sequence Tutor), 2017; Lee
et al. (SeqGAN), 2017; Malik and Ek (StyleNet), 2017; Roberts et al. (Music-
VAE), 2017; Roberts et al. (MusicVAE), 2018; Sabathé et al. (DRAW), 2017;
Shin et al., 2017; Simon and Oore (PerformanceRNN), 2017; Teng et al., 2017;
Tikhonov and Yamshchikov (VRASH), 2017; Ycart and Benetos, 2017; Yang
et al. (MidiNet), 2017; Colombo and Gerstner (BachProp), 2018; Koh et al.
(C-RVAE), 2018; Mao et al. (DeepJ), 2018; Simon et al. (MusicVAE), 2018;
Walder and Kim (MotifNet), 2018), much thanks to the availability of data.

3 LITERATURE SURVEY 39

Because of the lack of restriction on durations in arbitrary MIDI, turning MIDI into a data
representation is not always straightforward. One may record MIDI with a certain quan-
tization, which means that during recording, the notes played will be adjusted to all start
and end on the quantization unit, often chosen to be a sixteenth note or so. However, when
no quantization is used, which is often the case for live performances. durations may start
and end on such fine-grained units such as a 96th fraction of a quarter note or even smaller.
Thus, some procedure must be in place for the conversion. A common scheme is to sam-
ple the MIDI file according to some time interval that corresponds to a minimum duration
(likely to be the same as the chosen time slicing unit) (Boulanger-Lewandowski et al.
(RNN-RBM, RNN-NADE), 2012; Fabius and van Amersfoort (VRAE), 2015;
Yu et al. (SeqGAN), 2016). It is not intuitively straightforward that this will generate
very accurate transcriptions however and other, more elaborate procedures have been devised
as well.

• ABC:

ABC is a textual representation of music which contains both meta data as well as the actual
music. It has been used as input representation a few times (Boulanger-Lewandowski
et al. (RNN-RBM, RNN-NADE), 2012; Goel et al. (RNN-DBN), 2014; Sigtia
et al., 2014; Bayer and Osendorfer (STORN), 2015; Gan et al. (TSBN), 2015;
Colombo et al., 2016; Colombo et al. (DAC), 2017; Sturm et al. (char-rnn,
folk-rnn), 2016; Agarwala et al., 2017).

• Humdrum:

Humdrum is a flexible textual format that allows a user to define the actual format to use
themselves. Its structure holds information about what it encodes and it uses the vertical
direction for successive events and the horizontal direction for simultaneous events, yielding a
matrix-like format similar to how data would be modelled in an neural network. By specifying
the format, time slicing or specific durations can be used. Even though not very common, it
has been used in music modelling (O’Brien and Román (MusicNet), 2016).

• MusicXML:

Being not as common as MIDI, the MusicXML format has been used as well, often when
authors want to train on some specific music that doesn’t necessarily exist in MIDI form. Ex-
amples are Scott Joplin (Sun (DeepHear), 2015) jazz soloists Charlie Parker, Miles Davis,
Louis Armstrong (De Prisco et al., 2017) and of course J.S. Bach (Liang et al. (Bach-
Bot), 2017). Also general datasets in MusicXML have been distributed and subsequently
used (Bretan et al., 2016; Wu et al. (HRNN), 2017).

• Band in a Box:

A program rather than a format but its format has been used as well (Choi et al. (char-
RNN, word-RNN), 2016).

40 3 LITERATURE SURVEY

• Audio:

Using plain wave audio, or mp3, as input representation is not common but has been done
in a few cases (Sarroff and Casey (DeepAutoController), 2014; Nayebi and Vitelli
(GRUV), 2015; Kalingeri and Grandhe, 2016; van den Oord et al. (WaveNet),
2016a; Mehri et al. (SampleRNN), 2017; Engel et al., 2017). In one case, synthe-
sized audio from MIDI files were used (Eppe et al., 2018).

• Other:

Before the more common input representations got more or less standardized, different rare
representations were used. One example is leadsheet representation in the format of a software
called Impro-Visor (Bickerman et al. (RBM-provisor), 2010).

3.2.4.6 Data Representation

This section describes how data, on a low level, is represented when processed by the actual train-
ing algorithm. This is in contrast to input representation which describes the representation of
music before any preprocessing steps occurring before the actual learning takes place. In some
cases it is common to let a network determine an embedding for the initial low level data rep-
resentation through the use of an embedding layer, in which case the output of this layer might
be seen as the actual data representation (Huang et al. (ChordRipple), 2016; Huang and
Wu, 2016; Madjiheurem et al. (Chord2Vec), 2016; O’Brien and Román (MusicNet),
2016; Walder, 2016; Agarwala et al., 2017; Brunner et al. (JamBot), 2017; Mehri
et al. (SampleRNN), 2017; Lee et al. (SeqGAN), 2017; Liang et al. (BachBot),
2017; Tikhonov and Yamshchikov (VRASH), 2017). Such a representation is essentially
distributed and absolute or relative, depending on what the input to the embedding layer is.

The most basic way to describe music symbolically on a low level is to model the properties of pitch
and duration even though additional aspects to this exists. As far as pitch is concerned, no matter
the representation, some range of represented pitches is chosen. Ranges can be a single octave
(Gang and Lehmann, 1995; Gang and Berger, 1996; Large et al., 1995; Goldman
et al. (NetNeg), 1999; Berger and Gang, 1997; Gang et al. (HNN), 1997; Berger and
Gang, 1999; Gang et al. (HNN), 1999; Melo and Wiggins, 2003; Johnson (LSTM-
NADE, TP-LSTM-NADE, BALSTM), 2017; Verbeurgt et al., 2004; Adiloglu and
Alpaslan (NeuroComposer), 2007; Bickerman et al. (RBM-provisor), 2010; Tikhonov
and Yamshchikov (VRASH), 2017), a few octaves (Todd, 1988; Todd, 1989; Freisleben,
1992; Tsang and Bellgard (EBM), 1992; Bellgard and Tsang (EBM), 1994; Franklin
(CHIME), 2001; Eck and Schmidhuber, 2002; Melo and Wiggins, 2003; Eck and
LaPalme, 2006; Fabius and van Amersfoort (VRAE), 2015; Bretan et al., 2016; Chu
et al., 2016; Colombo et al., 2016; Jaques et al. (RL Tuner), 2016; Lattner et al.
(C-RBM), 2016; O’Brien and Román (MusicNet), 2016; Sun et al., 2016; Bretan
et al., 2017; Brunner et al. (JamBot), 2017; Huang et al. (CocoNet), 2017; Jaques

3 LITERATURE SURVEY 41

et al. (Sequence Tutor), 2017; Wu et al. (HRNN), 2017; Yang et al. (MidiNet),
2017; Mao et al. (DeepJ), 2018), the (approximately) 88 keys of the piano (Boulanger-
Lewandowski et al. (RNN-RBM, RNN-NADE), 2012; Goel et al. (RNN-DBN),
2014; Liu and Ramakrishnan, 2014; Sigtia et al., 2014; Gan et al. (TSBN), 2015;
Lyu et al. (LSTM-RTRBM), 2015; Sun (DeepHear), 2015; Vohra et al. (LSTM-
DBN), 2015; Madjiheurem et al. (Chord2Vec), 2016; Walder, 2016; Dong et al.
(MuseGAN), 2017; Hennig et al. (Classifying VAE, Classifying VAE+LSTM), 2017;
Ycart and Benetos, 2017; Colombo and Gerstner (BachProp), 2018) or the 128 pitches
represented in the MIDI format (Liang et al. (BachBot), 2017; Malik and Ek (StyleNet),
2017; Roberts et al. (MusicVAE), 2017; Roberts et al. (MusicVAE), 2018; Sabathé
et al. (DRAW), 2017; Simon and Oore (PerformanceRNN), 2017; Simon et al.
(MusicVAE), 2018).

• Pitch:

First of all, as part of all neural network learning problems, input data can be represented in
binary form, discrete form and real form. The binary form is, as usual, often to prefer, and
one-hot input is frequently used in music when modelling monophonic music. In polyphonic
settings, a many-hot encoding is typically used. In a few cases, discrete and real numbers are
used in different ways.

Pitch might further be represented either in a local or distributed manner (Nierhaus, 2009),
where, in the former, the activation of a pitch corresponds to a change in one input unit only.
The alternative is to represent a pitch with a distributed representation using several input
units each, for example [1.0, 1.0, 0.0] may represent C whereas [1.0, 1.0, 1.0] and [0.0, 0.0, 1.0]

represents D and E respectively. The disadvantage of a distributed representation is that
it can give the network the illusion that some pitches are closer to each other than others.
With our example encodings, C and D are, according to a lot of interpretations, closer than
C and E, which might be desirable or not; it’s not always the case that it is closer to the
correct answer if the output of the algorithm picks a D instead of an E when it should be a
C. A similar argument arises when expressing pitches as real numbers where, for example,
C is 2.0, D is 3.0 and E is 4.0. Here C and E seem less alike than C and D and D and E
which might be deceitful in some situations. On the other hand, one might argue against a
representation where all input units are equally distanced from each other as well and claim
that according to how we perceive pitch, both subjectively and physically in terms of overtone
series, some pitches and chords are more similar to one another. Modelling pitches or chords
according to this principle results in a distributed representation where extra thought has
been put into the distances that arise between tokens. Such a representation has been referred
to as "psychoacoustically motivated" (Laden and Keefe, 1989; Mozer (CONCERT),
1990; Mozer and Soukup (CONCERT), 1991; Mozer (CONCERT), 1994) and
represents, for example, C with an encoding more similar to that of G than to that of F# with
the motivation that G is a frequent pitch in the overtone series of C and thus appears together

42 3 LITERATURE SURVEY

with (or in close vicinity to) C in tonal music to a much higher degree than F#. Thus, a
network could be considered more correct in mispredicting a C for a G than for an F#. The
inclusion of these principles is a way of guiding models in terms of data representation.

Pitches might also be represented either in an absolute or relative manner (Nierhaus,
2009). In the absolute case, a given input is always represented in the same way, no matter
what came before it and no matter from what part of the network we are looking at it,
whereas in a relative representation, the input depends on sequential or spatial context. An
advantage of absolute representation is that the algorithm, during the creation phase, may
make a single error but still get the subsequent notes correct; with a relative representation,
an error may propagate and result in errors in the remaining part of the output as well (Todd,
1988; Todd, 1989; Adiloglu and Alpaslan (NeuroComposer), 2007). However, with
a relative representation, we may span a large number of absolute pitches by using many
small steps, thus with few input units (Corrêa et al., 2008), whereas with an absolute
representation, no matter if it is local or distributed, the full state of the pitch part of the
system, thus all input units, have to be represented in every input. This is inefficient since
most inputs are sparse; the number of simultaneously active voices (pitches) are generally
much lower than the number of possible pitches. Also, one thought here is that large leaps
are uncommon in music generally, which may be taken advantage of by having fewer rela-
tive input units that represent the sizes of smaller leaps (intervals). Finally, modelling pitch
absolutely implies that a network may be able to perfectly predict a given melody in one
key, but not at all in another (Corrêa et al., 2008). The fact that two pieces, the second
piece being a transposition of the first, sound about the same to most people is, as previ-
ously said, a property of music called transposition invariance (Johnson (LSTM-NADE;
TP-LSTM-NADE, BALSTM), 2017), and with relative modelling, we get it for free.
Two common ways to make up for pitch invariance with absolute representation are to either
transpose all training data to a common key or to transpose all training data to all (or many)
keys (Bickerman et al. (RBM-provisor), 2010; Bretan et al., 2016; Madjiheurem
et al. (Chord2Vec), 2016; O’Brien and Román (MusicNet), 2016; Walder, 2016;
Agarwala et al., 2017; Bretan et al., 2017; Hadjeres et al. (GLSR-VAE), 2017;
Hadjeres and Pachet (DeepBach), 2017; Hadjeres and Nielsen (Anticipation-
RNN), 2017; Simon and Oore (PerformanceRNN), 2017; Ycart and Benetos,
2017; Yang et al. (MidiNet), 2017). The former often implies that all training data
is transposed to, or filtered for, a fixed pitch class (for example C major and C minor)
(Boulanger-Lewandowski et al. (RNN-RBM, RNN-NADE), 2012; Lyu et al.
(LSTM-RTRBM), 2015; Choi et al. (char-RNN, word-RNN), 2016; Chu et al.,
2016; Huang et al. (ChordRipple), 2016; Huang and Wu, 2016; Sturm et al.
(char-rnn, folk-rnn), 2016; Brunner et al. (JamBot), 2017; Johnson (LSTM-
NADE, TP-LSTM-NADE, BALSTM), 2017; Hennig et al. (Classifying VAE,
Classifying VAE+LSTM), 2017) or a fixed scale or key (for example C major and its
relative A minor with the same pitch content) (Mozer (CONCERT), 1990; Mozer and

3 LITERATURE SURVEY 43

Soukup (CONCERT), 1991; Mozer (CONCERT), 1994; Gang and Lehmann,
1995; Gang et al. (HNN), 1997; Gang et al. (HNN), 1999; Eck and LaPalme,
2006; Adiloglu and Alpaslan (NeuroComposer), 2007; Colombo et al., 2016; Sun
et al., 2016; Liang et al. (BachBot), 2017; Shin et al., 2017) whereas the latter can
be seen as a type of data augmentation and increases the size of the dataset by a factor of
twelve and is frequently used as well. Yet another way of doing is to let input data remain in
its original keys but transpose every sequence on the fly, randomly, during training (Roberts
et al. (MusicVAE), 2017; Colombo and Gerstner (BachProp), 2018; Simon et al.
(MusicVAE), 2018). However, just using a single key or scale might have implications for
what music is allowed to model and in a piece that modulates, the episode in another key
might suffer from this, especially if there are some other key specific considerations (such as
the chords from C major in a local absolute encoding). A few simply uses the data as is and do
not bother with the mentioned problem (Goel et al. (RNN-DBN), 2014; Liu and Ra-
makrishnan, 2014; Huang and Wu, 2016; Colombo et al. (DAC), 2017; Johnson
(LSTM-NADE, TP-LSTM-NADE, BALSTM), 2017; Hennig et al. (Classifying
VAE, Classifying VAE+LSTM), 2017). Worth to point out is that it is generally less
straightforward how to model pitch successfully in a relative fashion.

The most common way to model pitch in networks working in the symbolic domain is to
use a binary, local, absolute encoding. In such, there are n binary ordered input units
used to represent the same number of ordered pitches. Having an input set to 1.0, indi-
cates an active pitch and non-active pitches are set to 0.0. In some work (often early), the
given range is limited to a few octaves (Todd, 1988; Todd, 1989; Freisleben, 1992;
Tsang and Bellgard (EBM), 1992; Bellgard and Tsang (EBM), 1994; Franklin
(CHIME), 2001; Eck and Schmidhuber, 2002; Melo and Wiggins, 2003; Eck and
LaPalme, 2006; Fabius and van Amersfoort (VRAE), 2015; Bretan et al., 2016;
Chu et al., 2016; Colombo et al., 2016; Jaques et al. (RL Tuner), 2016; Lattner
et al. (C-RBM), 2016; O’Brien and Román (MusicNet), 2016; Sun et al., 2016;
Bretan et al., 2017; Brunner et al. (JamBot), 2017; Huang et al. (CocoNet),
2017; Jaques et al. (Sequence Tutor), 2017; Wu et al. (HRNN), 2017; Yang
et al. (MidiNet), 2017; Mao et al. (DeepJ), 2018) whereas recent work tend to
model the full range of a piano (typically around 88 pitches) (Boulanger-Lewandowski
et al. (RNN-RBM, RNN-NADE), 2012; Goel et al. (RNN-DBN), 2014; Liu
and Ramakrishnan, 2014; Sigtia et al., 2014; Gan et al. (TSBN), 2015; Lyu
et al. (LSTM-RTRBM), 2015; Sun (DeepHear), 2015; Vohra et al. (LSTM-
DBN), 2015; Madjiheurem et al. (Chord2Vec), 2016; Walder, 2016; Dong et al.
(MuseGAN), 2017; Hennig et al. (Classifying VAE, Classifying VAE+LSTM),
2017; Ycart and Benetos, 2017; Colombo and Gerstner (BachProp), 2018), lead-
ing to a so-called piano roll representation (matrix). This name is inspired from the piano
rolls used in self-playing pianos in the early 20th century. In some cases, only one octave is
used which corresponds to pitch class information only (Gang and Lehmann, 1995; Gang

44 3 LITERATURE SURVEY

and Berger, 1996; Large et al., 1995; Goldman et al. (NetNeg), 1999; Berger
and Gang, 1997; Gang et al. (HNN), 1997; Berger and Gang, 1999; Gang et al.
(HNN), 1999; Melo and Wiggins, 2003; Johnson (LSTM-NADE, TP-LSTM-
NADE, BALSTM), 2017) sometimes enhanced with a local input for octave making the
representation somewhat distributed (Verbeurgt et al., 2004; Adiloglu and Alpaslan
(NeuroComposer), 2007; Bickerman et al. (RBM-provisor), 2010; Tikhonov and
Yamshchikov (VRASH), 2017). Yet another alternative is to model all the pitches of the
MIDI format which are 128 in number (Liang et al. (BachBot), 2017; Malik and Ek
(StyleNet), 2017; Roberts et al. (MusicVAE), 2017; Roberts et al. (MusicVAE),
2018; Sabathé et al. (DRAW), 2017; Simon and Oore (PerformanceRNN), 2017;
Simon et al. (MusicVAE), 2018). A non-binary but local and absolute way of mod-
elling pitch is to use numbers representing, for example, MIDI pitch numbers or piano key
ordering, as is, in a discrete way (Madjiheurem et al. (Chord2Vec), 2016; Yu et al.
(SeqGAN), 2016; Johnson (LSTM-NADE, TP-LSTM-NADE, BALSTM), 2017;
Guimaraes et al. (ORGAN), 2017; Hadjeres et al. (GLSR-VAE), 2017; Had-
jeres and Pachet (DeepBach), 2017; Hadjeres and Nielsen (Anticipation-RNN),
2017; Liang et al. (BachBot), 2017; Shin et al., 2017; Walder and Kim (Mo-
tifNet), 2018) or normalized to be real-valued in [0, 1] (Mogren (C-RNN-GAN), 2016).
In some cases, the actual note names are used, in which case the representations of, for ex-
ample, C# and Db are different even though they are the same sounding pitch (Hadjeres
et al. (GLSR-VAE), 2017; Hadjeres and Pachet (DeepBach), 2017; Hadjeres
and Nielsen (Anticipation-RNN), 2017) (with MIDI numbers this distinction is not
possible). This difference is due to context and differ depending on the key of the music which
is helpful in models that deal with this distinction in the output. The discrete representation
can also be used in a somewhat distributed way, as in the binary case, using pitch classes
with additional information about octave. Such representation along with the equivalent rep-
resentation of a pitch set for chords as well as duration has been used in a word-like manner
(Lee et al. (SeqGAN), 2017).

Using symbolic music in textual form as input, a local absolute encoding often arises from
describing the input pitches (or instruments in the case of percussion instruments) during
a time slice as a class in a binary string with activities. In a melody, each such pitch may
be represented as a word (Choi et al. (char-RNN, word-RNN), 2016; Sturm et al.
(char-rnn, folk-rnn), 2016) or as a sequence of characters (Sturm et al. (char-rnn,
folk-rnn), 2016; Agarwala et al., 2017), the latter effectively forming an absolute rep-
resentation distributed in time. Such a representational string can be processed sequentially
(Choi et al. (char-RNN, word-RNN), 2016) or as a single token at a time (in the
resulting music) (Sturm et al. (char-rnn, folk-rnn), 2016). The latter would imply the
opposite of a distributed encoding, that is, a single word token that describes the activities
of several pitches, effectively forming a local, absolute chord representation instead. In the
textual domain, pitches may also be encoded by their MIDI messages (separate on and off

3 LITERATURE SURVEY 45

messages) (Huang and Wu, 2016) or by a string with a pitch number (Huang and Wu,
2016), both of which constitutes a local, absolute representation when used as tokens in a
text processing RNN.

In a few works, a distributed, absolute pitch representation is used. One such "psychoacous-
tically motivated" representation still uses a binary vector to represent an ordered absolute
range of pitches, but uses five activations to represent one actual pitch (Laden and Keefe,
1989). The idea is that a pitch is represented by the actual pitch along with activations in its
five closest subharmonics, which is a series of pitches at different intervals below the sound-
ing pitch. An approach with similar ideas, often referenced in the literature, uses thirteen
activations to represent one pitch: six inputs represent the chromatic location (to account
for chromatic vicinity), six inputs represent the location in the circle of fifths (to account
for tonal vicinity) and the last input represent the pitch height originally in a logarithmic
scale (Mozer (CONCERT), 1990; Mozer and Soukup (CONCERT), 1991; Mozer
(CONCERT), 1994) but is also later used with MIDI numbers (Adiloglu and Alpaslan
(NeuroComposer), 2007). In such a system, every pitch class (for example C) is rep-
resented with the same first twelve inputs, but differ in the pitch height input depending
on which octave the pitch is in. Building on this concept, as well as an idea by Laden and
Keefe (Laden and Keefe, 1989), a representation with seven bits, each corresponding to
a circle of thirds, can be used to represent an octave of pitches (Franklin, 2004; Franklin
and Locke, 2005; Franklin, 2006; Franklin, 2005; Coca et al., 2011). The idea
here is that there are four circles of major thirds and three of minor thirds and one pitch
occurs in exactly one major circle and one minor; setting these circle indices to 1 in the
seven-bit vector is the representation of a certain pitch (class). Additional input for octave
may augment this representation to cover multiple octaves (Coca et al., 2011). Chords
may also be represented by their harmonic function (this assumes that all music is modelled
with respect to one key since the absolute representation otherwise vary) in a local, absolute
fashion whereby pitches are represented by a binary vector indicating in which chords the
pitch occurs (Hild et al. (HARMONET), 1991).

Using a distributed, relative representation is unusual but one such example is MELONET
which uses a representation that is relative to a reference note whereby subsequent notes are
coded with a representation of interval and direction with an extra bit to add an interval of
an octave (Hörnel and Menzel (MELONET), 1998).

Pitch may also be modelled in a local, relative fashion (Lewis (CBR), 1991; Nishijima
and Watanabe (Neuro-Musician), 1993; Chen and Miikkulainen, 2001; Corrêa
et al., 2008; De Prisco et al., 2017; Teng et al., 2017). In the case of monophonic
or homophonic music, this can be done with integers indicating the number of steps (or
interval) between the current pitch and the next (Lewis (CBR), 1991; Nishijima and
Watanabe (Neuro-Musician), 1993; Chen and Miikkulainen, 2001; Corrêa et al.,
2008; Teng et al., 2017). Note that this is the same as having an arbitrary reference note

46 3 LITERATURE SURVEY

and choose the last seen note as this reference note. The reference can also be a chord against
which the pitch corresponds to a step (not necessarily included in the chord but from the
scale it is built on) (De Prisco et al., 2017). In the case of polyphonic music, an output
may represent whether a specific pitch should be on or off for the next time step, given a
vector of relative surrounding pitches as input (Johnson (LSTM-NADE, TP-LSTM-
NADE, BALSTM), 2017; Mao et al. (DeepJ), 2018). This requires that each pitch
is modelled separately to some extent, preferably by the same network.

A representation not resembling any other represents the contents of a unit of monophonic
music, typically one or a few measures (Bretan et al., 2016), in a bag-of-words (BOW)
manner. Here, the exact content of the unit is not represented, totally in line with BOW
where words counts of sentences are accounted for but not the overall order. In this context,
instead the number of occurrences of pitches and pitch bigrams of certain heights, the number
and nature of intervals present and much more are accounted for. The representation used
in this publication is indeed absolute but whether it is distributed or local is hard to tell,
since several things are represented in parallel. One might argue, however, that such a
representation is distributed.

• Chords:

Not all models have the notion of chords as something clearly separated from melodic pitches,
and we typically find this in architectures in the musical domains of harmonization and
melody with chords. Many of these model chords in a distributed, absolute fashion as a
group of pitches (Laden and Keefe, 1989; Tsang and Bellgard (EBM), 1992; Bell-
gard and Tsang (EBM), 1994; Gang and Berger, 1996; Berger and Gang, 1997;
Berger and Gang, 1999; Eck and Schmidhuber, 2002; Melo and Wiggins, 2003;
Franklin, 2004; Franklin and Locke, 2005; Franklin, 2006; Franklin, 2005; Bick-
erman et al. (RBM-provisor), 2010) or attributes such as root, inversion, extensions
and alterations (Huang et al. (ChordRipple), 2016; De Prisco et al., 2017; Teng
et al., 2017) or a combination thereof with pitch class and chord quality (Yang et al.
(MidiNet), 2017). One representation used by Laden and Keefe was hinted at briefly in
the previous section; the pitches of a chord are represented as the sum of the representation
of their constituent pitches where each pitch is represented by the sounding pitch along with
five of its closest subharmonic pitches (Laden and Keefe, 1989). Pitches that occur in
several subharmonic series receive an input multiplied by the number of series they occur
in. The third version of CONCERT, uses the very same representation but with small alter-
ations, such as weighed subharmonic contribution (smaller weights the farther down in the
subharmonic scale a pitch occurs) and not representing several octaves of pitches but only
one, corresponding to all pitch classes (Mozer (CONCERT), 1994). One extra input
based on similarity between chords is also included. Yet another representation inspired by
both Mozer’s pitch representation and the chord representation used by Laden and Keefe
uses a representation with the sum of the circle of thirds representation of the individual

3 LITERATURE SURVEY 47

pitches, to form the desired chord in question (Franklin, 2004; Franklin and Locke,
2005), later also with normalization so that all values lie in [0.0, 1.0] (Franklin, 2006;
Franklin, 2005). Chords can also be distributed in time, which is the case when modelling
polyphonic music sequentially (note by note), whereby the notes of a chord are modelled as
a sequence of single notes with some mechanism indicating when the current time step is fin-
ished (Mogren (C-RNN-GAN), 2016; Walder, 2016). Distributed in time is also the
textual representation of chords as a sequence of characters where the model only processes
one character at a time (Choi et al. (char-RNN, word-RNN), 2016).

When modelling chords in a local, absolute fashion, each chord is modelled as part of a vocab-
ulary and as a result of this, new chords are not possible to generate. As vocabulary, all major
and minor chords (Shin et al., 2017), sometimes completed with dominant chords (Gang
and Lehmann, 1995; Gang et al. (HNN), 1997; Gang et al. (HNN), 1999) as well
as augmented chords (Simon et al. (MusicVAE), 2018) have been used. Another ap-
proach is to use the harmonic function (tonic, subdominant, etc...) (Lewis (CBR), 1991),
sometimes augmented to a distributed representation with local input that determines in-
version as well as characteristic dissonances, which presumes that all input uses the same
scale (otherwise harmonic functions differ between input sequences) (Hild et al. (HAR-
MONET), 1991). Using all the chords found in the training data as vocabulary, or a
subset thereof, is also common (Eck and LaPalme, 2006; Choi et al. (char-RNN,
word-RNN), 2016; Chu et al., 2016; Brunner et al. (JamBot), 2017). In the
textual input domain, concatenating pitch numbers into single words treated as tokens in a
word vocabulary also constitutes a local and absolute encoding of chords (Huang and Wu,
2016).

One distributed, relative chord representation uses a one octave local pitch vector relative to
a reference note, resulting in a representation that models several types of chords as well as
inversions (Hörnel and Menzel (MELONET), 1998).

When summarizing the pitch content of a bar in a chordal representation, it is possible to use
a pitch-class local representation where each pitch class is represented by the sum of fractions
of the bar that the pitch class is active for (Melo and Wiggins, 2003).

• Percussion: Rhythmic instruments are typically modelled in some sense that fits how chords
are represented, therefore, the reader is urged to see representation of percussion instruments
as a representation of several pitches at once. An important difference is that rhythmic
instruments can typically not play sustained notes, and therefore the whole notion of duration
can be omitted.

• Duration:

No matter the musical domain, the problem of modelling duration has almost exclusively
been solved by using so-called time slicing, whereby the temporal aspect of music is solved
by dividing the aspect of time in music into fixed-length slices, out of which the data for a

48 3 LITERATURE SURVEY

sequential time step corresponds to one. Such a solution is good because it is straightforward
and it allows for independent simultaneous events which might otherwise be hard to model.
Typically, it is argued that the size of the time slice should correspond to the greatest common
factor of all note durations in the music one is trying to model (Adiloglu and Alpaslan
(NeuroComposer), 2007). Even though this makes sense, it is not always feasible and
may impact learning in a negative way. It is thus common that finer time slices is sacri-
ficed in favor of shorter sequences and an easier learning problem which, in turn, requires
notes to be quantized to a minimum note length (according to the size of the time slice)
which might be greater than they really are (Eck and LaPalme, 2006). One argument
against time slicing in general is that long notes require several identical input time steps
and it is reasonable to think that a network suffers from having to learn to deal with this
(Mozer (CONCERT), 1994). It is also argued that time slicing encourages the model
to repeat already turned on keys (Shin et al., 2017, Ycart and Benetos, 2017) and
the finer the granularity of the time slicing, the more this behaviour is encouraged, leading
to a lower network loss but not really implying better generation capabilities. An impor-
tant decision then is to determine the granularity of the time slicing which implicitly also
restricts what durations can be expressed in the network. Most often, either the quarter
note (Hild et al. (HARMONET), 1991; Lewis (CBR), 1991; Gang and Berger,
1996; Berger and Gang, 1999; Hörnel and Menzel (MELONET), 1998; Corrêa
et al., 2008; Boulanger-Lewandowski et al. (RNN-RBM, RNN-NADE), 2012;
Choi et al. (char-RNN, word-RNN), 2016; Huang et al. (CocoNet), 2017),
the eighth note (Todd, 1988; Todd, 1989; Eck and Schmidhuber, 2002; Melo and
Wiggins, 2003; Eck and LaPalme, 2006; Boulanger-Lewandowski et al. (RNN-
RBM, RNN-NADE), 2012; Huang and Wu, 2016; O’Brien and Román (Mu-
sicNet), 2016; Brunner et al. (JamBot), 2017; Johnson (LSTM-NADE, TP-
LSTM-NADE, BALSTM), 2017; Hennig et al. (Classifying VAE, Classifying
VAE+LSTM), 2017; Huang et al. (CocoNet), 2017; Koh et al. (C-RVAE),
2018) or the sixteenth note (Freisleben, 1992; Nishijima and Watanabe (Neuro-
Musician), 1993; Hörnel and Menzel (MELONET), 1998; Franklin (CHIME),
2001; Sun (DeepHear), 2015; Choi et al. (char-RNN, word-RNN), 2016; Chu
et al., 2016; Jaques et al. (RL Tuner), 2016; Lattner et al. (C-RBM), 2016;
Johnson (LSTM-NADE, TP-LSTM-NADE, BALSTM), 2017; Guimaraes et al.
(ORGAN), 2017; Hadjeres et al. (GLSR-VAE), 2017; Hadjeres and Pachet
(DeepBach), 2017; Hadjeres and Nielsen (Anticipation-RNN), 2017; Hennig
et al. (Classifying VAE, Classifying VAE+LSTM), 2017; Huang et al. (Co-
coNet), 2017; Jaques et al. (Sequence Tutor), 2017; Liang et al. (BachBot),
2017; Malik and Ek (StyleNet), 2017; Roberts et al. (MusicVAE), 2017; Roberts
et al. (MusicVAE), 2018; Teng et al., 2017; Wu et al. (HRNN), 2017; Ycart
and Benetos, 2017; Yang et al. (MidiNet), 2017; Mao et al. (DeepJ), 2018) is
chosen as the unit of a time slice even though the half-note has occurred as well (Tsang and

3 LITERATURE SURVEY 49

Bellgard (EBM), 1992; Bellgard and Tsang (EBM), 1994; Gang et al. (HNN),
1997; Gang et al. (HNN), 1999), typically in harmonization contexts since harmonies
tend to change less often. Extreme cases, such as using the 32nd note (Sabathé et al.
(DRAW), 2017), the 32nd note triplet (resulting in twelve slices for each quarter note)
exist (Bickerman et al. (RBM-provisor), 2010) as well as 24 slices per quarter (Bre-
tan et al., 2017; Dong et al. (MuseGAN), 2017), which has the benefit that a lot of
both triplet and duplet subdivisions are accounted for. When modelling meta information in
the textual domain, it is possible to include the time slicing unit as a modelling parameter
and thus make it variable (Sturm et al. (char-rnn, folk-rnn), 2016) or just make it
an output parameter (Sturm et al. (char-rnn, folk-rnn), 2016; Agarwala et al.,
2017). With time slicing comes also, as mentioned, the problem of distinguishing between
successively repeated notes and a single longer note. Naively, these are modelled in the same
way and therefore, some extra device is required. Often, this device is an extra number of
inputs giving information about whether a note is rearticulated or held from before (Todd,
1988; Todd, 1989; Freisleben, 1992; Hörnel and Menzel (MELONET), 1998;
Franklin (CHIME), 2001; Adiloglu and Alpaslan (NeuroComposer), 2007; John-
son (LSTM-NADE, TP-LSTM-NADE, BALSTM), 2017; Liang et al. (Bach-
Bot), 2017; Malik and Ek (StyleNet), 2017; Mao et al. (DeepJ), 2018). Some use
this input only to prolong whatever pitch was active last, without supplying that actual pitch
again (Bickerman et al. (RBM-provisor), 2010; Jaques et al. (RL Tuner), 2016;
Guimaraes et al. (ORGAN), 2017; Hadjeres et al. (GLSR-VAE), 2017; Had-
jeres and Pachet (DeepBach), 2017; Hadjeres and Nielsen (Anticipation-RNN),
2017; Roberts et al. (MusicVAE), 2017; Roberts et al. (MusicVAE), 2018; Teng
et al., 2017; Wu et al. (HRNN), 2017). The opposite, an input that explicitly shuts
off the previous note, can also be used but may be ambiguous for the network to interpret
if it is only used sometimes and implicitly indicated at other times; typically playing a dif-
ferent note at consecutive time steps shuts off the first implicitly but is indicated explicitly,
should the first note be followed by a pause or be repeated (Jaques et al. (RL Tuner),
2016). Another alternative is to halve the time slicing unit (for example, if one wishes to
time slice on eighth notes, one does it on sixteenth notes instead) and let the second unit
in every successive pair of sixteenth notes be turned on if a note is sustained and turned
off if it is not (Eck and Schmidhuber, 2002). This, effectively, amounts to the same
thing as adding an extra input for each possible pitch (or voice if there is a restriction on
voices) modelling rearticulation with the benefit that we might model a finer note length at
times, if needed. The downside however is that longer successively repeated notes are cut off
just to signal that they are not sustained. Sometimes, the problem of rearticulation is sim-
ply ignored and either the mentioned distinction cannot be made whether necessary or not
(Tsang and Bellgard (EBM), 1992; Bellgard and Tsang (EBM), 1994; Bretan
et al., 2017; Ycart and Benetos, 2017) or some heuristic is applied to solve the prob-
lem (Eck and LaPalme, 2006; O’Brien and Román (MusicNet), 2016; Brunner

50 3 LITERATURE SURVEY

et al. (JamBot), 2017; Sabathé et al. (DRAW), 2017; Yang et al. (MidiNet),
2017). Reducing rearticulated notes to shorter values (if possible) resolves the issue in part
(Lattner et al. (C-RBM), 2016). Finally, a lot of recent publications do not address
the issue clearly (Boulanger-Lewandowski et al. (RNN-RBM, RNN-NADE), 2012;
Goel et al. (RNN-DBN), 2014; Liu and Ramakrishnan, 2014; Sigtia et al., 2014;
Fabius and van Amersfoort (VRAE), 2015; Gan et al. (TSBN), 2015; Lyu et al.
(LSTM-RTRBM), 2015; Sun (DeepHear), 2015; Vohra et al. (LSTM-DBN),
2015; Choi et al. (char-RNN, word-RNN), 2016; Johnson (LSTM-NADE, TP-
LSTM-NADE, BALSTM), 2017; Dong et al. (MuseGAN), 2017; Hennig et al.
(Classifying VAE, Classifying VAE+LSTM), 2017; Huang et al. (CocoNet),
2017; Koh et al. (C-RVAE), 2018). With most percussive instruments, this is not
a problem since sounds cannot be sustained (Choi et al. (char-RNN, word-RNN),
2016).

The problem formulation when not using time slicing is easiest when modelling monophonic
music where durations can easily be represented in a local (Chen and Miikkulainen,
2001; Colombo et al., 2016; Sun et al., 2016; Shin et al., 2017; Tikhonov and
Yamshchikov (VRASH), 2017) or distributed fashion (Mozer (CONCERT), 1990;
Mozer and Soukup (CONCERT), 1991; Mozer (CONCERT), 1994; Huang and
Wu, 2016; Colombo et al. (DAC), 2017) by the use of extra inputs. This, in turn,
can either be done in conjunction with pitch modelling (Franklin, 2005; Huang and
Wu, 2016; Sun et al., 2016; Tikhonov and Yamshchikov (VRASH), 2017) or in
an entirely separate network (Mozer (CONCERT), 1990; Mozer and Soukup (CON-
CERT), 1991; Mozer (CONCERT), 1994; Franklin, 2006; Colombo et al., 2016).
When modelling melody and chords, a word-like representation with variable explicit dura-
tion has been used in which duration, chord and melody form a single word (Lee et al.
(SeqGAN), 2017). In the polyphonic case, should one model multiple pitches at the same
time, using the same device becomes cumbersome since each pitch would have to have its
own duration input which effectively doubles the number of inputs. It also leads to situations
where only one voice, for example, changes while the others are sustained which would be rep-
resented by a new event where the sustained notes seem turned off, nonetheless, they would
still sound from the previous event. It is hard to prove if this is a good or a bad thing but
the idea that it seems unintuitive and "messy" is not far-fetched. If one models polyphony
note by note (sequential polyphony, as opposed to parallel polyphony), for example by the
inclusion of a relative timing mechanism that, for each event, indicates how far after the pre-
vious event it takes place, it is possible to model simultaneous notes sequentially by using the
same local absolute duration that may be used for monophony (Mogren (C-RNN-GAN),
2016; Walder, 2016; Colombo and Gerstner (BachProp), 2018). This may seem
as unintuitive as the previous suggestion however not as "messy" since events don’t partly
overlap in the same way (in the previous way, it might explicitly look as if the network is told

3 LITERATURE SURVEY 51

that a note is turned off whereas in the latter case, the note in question will not be specifically
mentioned since the whole range of notes is not explicitly modelled in every event).

In CONCERT, rhythm is modelled in a distributed way similar to how pitch is represented
(Mozer (CONCERT), 1990; Mozer and Soukup (CONCERT), 1991; Mozer
(CONCERT), 1994). A duration is modelled in terms of 1/12 of a quarter note. This
measure is divided on two circles (in analogy with the pitch representation): the circle of
1/3 with values 0/12, 1/12, 2/12 and 3/12 and the circle of 1/4 with values 0/12, 1/12,
and 2/12 (Mozer (CONCERT), 1994). Each circle is represented with two values and
a fifth value is used to represent the logarithm of the duration measuring between 0/12 and
96/12 to express a full note (here corresponding to four quarter notes). This system seems
much more complicated than most others but the benefits of it is that almost all note values
may be expressed, even triplets and sextuplets. Inspired by Mozer and his abiliy to express a
great many durations, Frankling derives a 16-bit representation that builds on the notion of a
quarter note being divided into 96 slices (the default for MIDI) (Franklin, 2006; Franklin,
2005). The different indices in the representation corresponds to a different number of slices
(the first index corresponds to 384 slices, equivalent to four quarter notes, or a whole note and
the last to 1 slice, corresponding to 1

96 of a quarter note) and each bit is set to 1 wherever the
remainder, after doing the same procedure for previous indices, is >= 1 when divided by the
number of slices corresponding to the index, in which case only the remainder is propagated
further down. This creates a very fine-grained, yet dense, representation for a large number
of durations. Franklin argues that one problem with the representation is that durations that
are very similar often have very different representations.

A final suggested alternative uses a sort of time slicing but together with an absolute represen-
tation specifying the number of time slicing units to skip forward by the index of the turned
on unit in a one-hot duration vector of a fixed size. Each unit in increasing order means that
10 ms. of actual time is added to the accumulated time of the last index, starting with 10
ms. and ending at 1 s. (Corrêa et al., 2008; Simon and Oore (PerformanceRNN),
2017; Simon et al. (MusicVAE), 2018). In polyphony, this may be used together with
a direct use of the MIDI on and off messages (Simon and Oore (PerformanceRNN),
2017; Simon et al. (MusicVAE), 2018). A closely related way of doing it uses a counter
that, using a one-hot encoding, increases when a note is sustained and resets when it is to
be rearticulated (Chu et al., 2016).

As can be read in the pitch subsection, music has been represented as the content of a musical
unit in a bag-of-words (BOW) manner, typically one or a few measures, and as such, duration
has been a part of it (Bretan et al., 2016). This includes, among other things, counts of
different fixed durations and duration bigrams.

Duration has also been distributed in time, by the MIDI on and off messages (tokens) for a
pitch in the textual input domain (Huang and Wu, 2016).

52 3 LITERATURE SURVEY

Finally, in PerformanceRNN, the input dataset is not only augmented by transposition but
also by increasing and decreasing all the note lengths of a piece of music by a fixed value
(Simon and Oore (PerformanceRNN), 2017).

• Signal:

When music is modelled from an audio signal, the signal is not always unaltered and a
common approach is to transform it into spectrograms with Fast Fourier Transform (FFT)
(Sarroff and Casey (DeepAutoController), 2014), Discrete Fourier Transform (DFT)
(Nayebi and Vitelli (GRUV), 2015) or some other Fourier Transform (FT) (Kalingeri
and Grandhe, 2016) and model these. Transformation into Mel spectrograms has been
done as well (Eppe et al., 2018). If modelled as unaltered audio, one might reduce the
size of each sample from 16 bits to 8 bits using PCM encoding (van den Oord et al.
(WaveNet), 2016a; Mehri et al. (SampleRNN), 2017; Engel et al., 2017).

• Conditioning / additional inputs:

Much additional data can be supplied to a model for various reasons. Here, we focus on
additional inputs that are not notes, chords or some representation thereof, that some mod-
els use during generation to condition the output as part of the integral architectural de-
cisions. For example, one might associate every input pattern with an identification (or
plan) input that is held fixed for a certain pattern during training. By interpolating be-
tween, or extrapolating from, these plans the model can generate new material in the com-
position phase (Todd, 1988; Todd, 1989; Freisleben, 1992; Gang and Lehmann,
1995; Gang et al. (HNN), 1997; Goldman et al. (NetNeg), 1999; Gang et al.
(HNN), 1999; Franklin (CHIME), 2001; Franklin, 2005). Sometimes supplying
the composer or genre as additional inputs throughout a piece leads to interesting results
(Bretan et al., 2017; Mao et al. (DeepJ), 2018). Another popular approach is to
supply a model with the current beat (Gang and Berger, 1996; Berger and Gang,
1997; Gang et al. (HNN), 1997; Berger and Gang, 1999; Gang et al. (HNN),
1999; Bickerman et al. (RBM-provisor), 2010; Brunner et al. (JamBot), 2017;
Johnson (LSTM-NADE, TP-LSTM-NADE, BALSTM), 2017) or sub-beat (Had-
jeres and Pachet (DeepBach), 2017; Shin et al., 2017), whether the current beat
is stressed (Hild et al. (HARMONET), 1991) or where in the musical phrase (Hild
et al. (HARMONET), 1991; Tsang and Bellgard (EBM), 1992; Bellgard and
Tsang (EBM), 1994; Gang et al. (HNN), 1999; Hörnel and Menzel (MEL-
ONET), 1998; Franklin, 2006; Franklin, 2005; Chu et al., 2016; Sturm et al.
(char-rnn, folk-rnn), 2016; Hadjeres and Pachet (DeepBach), 2017; Liang et al.
(BachBot), 2017), the current time step is, for the model to better learn structure and
connect it to the metric properties of the time signature. The latter requires extra anno-
tations or an additional subnet since the continuation of musical phrases is not possible to
decide from data only. Supplying the time signature, often as a fixed input throughout a
training pattern, has also been done (Mozer (CONCERT), 1990; Mozer and Soukup

3 LITERATURE SURVEY 53

(CONCERT), 1991; Mozer (CONCERT), 1994; Sturm et al. (char-rnn, folk-
rnn), 2016) as well as supplying the key (or tonic note) in the same manner (Adiloglu
and Alpaslan (NeuroComposer), 2007; Chu et al., 2016; Sturm et al. (char-rnn,
folk-rnn), 2016; Hadjeres and Pachet (DeepBach), 2017; Hennig et al. (Clas-
sifying VAE, Classifying VAE+LSTM), 2017). Others have also specified the time
step in a piece (Walder, 2016) as well as specifically added inputs indicating whether a
note is modelled on the same time step as the one before (in the case of modelling polyphony
sequentially) (Walder, 2016) as well as whether notes have been turned off from the pre-
vious time step (Walder, 2016). Modelling rests, the lack of any pitches, as a special in-
put is also common (Mozer (CONCERT), 1990; Mozer and Soukup (CONCERT),
1991; Mozer (CONCERT), 1994; Tsang and Bellgard (EBM), 1992; Bellgard
and Tsang (EBM), 1994; Franklin (CHIME), 2001; Bickerman et al. (RBM-
provisor), 2010; Choi et al. (char-RNN, word-RNN), 2016; Colombo et al.,
2016; Jaques et al. (RL Tuner), 2016; Guimaraes et al. (ORGAN), 2017;
Roberts et al. (MusicVAE), 2017; Roberts et al. (MusicVAE), 2018; Teng et al.,
2017; Wu et al. (HRNN), 2017). Conditioning (and modelling) musical contour has
been done in terms of inputs corresponding to fixed sizes of intervallic leaps to next pitch
(Goldman et al. (NetNeg), 1999; Hörnel and Menzel (MELONET), 1998) as
well as inputs modelling whether a melody is ascending or descending (Large et al., 1995;
Goldman et al. (NetNeg), 1999; Hörnel and Menzel (MELONET), 1998; Chu
et al., 2016). This is similar to modelling tension as a real value in [0.0, 1.0] as an ex-
tra input, also requiring extra annotations (Melo and Wiggins, 2003). Abstract motive
classes has been used to condition the elaboration of quarter notes into four sixteenth notes
(Hörnel and Menzel (MELONET), 1998).

After training, the absolute largest part of all publications initialize the composition, or
generation, phase by seeding the network with a few notes, chords or whatever it might
be. A few works instead uses a special start (and subsequently an end) symbol instead
(Todd, 1988; Todd, 1989; Adiloglu and Alpaslan (NeuroComposer), 2007; Bretan
et al., 2016; Choi et al. (char-RNN, word-RNN), 2016; Colombo et al., 2016;
Madjiheurem et al. (Chord2Vec), 2016; Sturm et al. (char-rnn, folk-rnn), 2016;
Walder, 2016; Agarwala et al., 2017; Hadjeres and Nielsen (Anticipation-RNN),
2017; Liang et al. (BachBot), 2017; Shin et al., 2017). It has been tested whether
supplying meta data about the song as initial state in an RNN results in good performance
(Agarwala et al., 2017; Tikhonov and Yamshchikov (VRASH), 2017) but it was
suggested that the information was ignored (Agarwala et al., 2017).

An occurring pattern of conditioning is also to supply so-called time-delay connections from
previous time steps, effectively making the outputs from these time steps available for later
predictions (Eck and LaPalme, 2006; Chu et al., 2016; Wu et al. (HRNN), 2017),
thus facilitating the model’s potential to discover repeated patterns, should one know at what
time step intervals it is likely to find repeated patterns.

54 3 LITERATURE SURVEY

Some publications focuses entirely on aspects of notes that seem peripheral in the more
general case, such as dynamics, or velocity as it is also called (Malik and Ek (StyleNet),
2017), and micro-timing (the offset between when a note should really have started or
ended according to a strict interpretation of a written score and when a performer chooses
to play it). Yet others model these things along with the more general division of pitch and
duration (Nishijima and Watanabe (Neuro-Musician), 1993; Mogren (C-RNN-
GAN), 2016; Simon and Oore (PerformanceRNN), 2017; Mao et al. (DeepJ),
2018; Simon et al. (MusicVAE), 2018).

More imaginative examples uses conditioning on extra-musical inspiration. For example,
nature landscapes as a curve in 2D (Corrêa et al., 2008) or chaotic melodies taken from,
among other things, solutions to differential equations (Coca et al., 2011).

3.2.4.7 Model / Architecture

This section is devoted to the kind of neural network architecture that has been used and also
attempts to give a short overview of each publication in terms of info that does not fit anywhere
else. Note that a model can contain several architectures in one and can thus be listed in several
model categories. However, each model is necessarily listed under the most noticeable architecture
used but only under other categories as well if there is anything particular to mention about it. To
make it easier to overview different classes of models and how they relate to each other, it is a good
idea to keep the taxonomy of generative models, as laid forth by the "GANfather" Ian Goodfellow
(Goodfellow, 2017), in mind.

Maximum Likelihood

Explicit density Implicit density

…

Tractable density
-Fully visible belief nets
 -NADE
 -MADE
 -PixelRNN
-Change of variables
models (nonlinear ICA)

Approximate density

Variational
Variational autoencoder

Markov Chain
Boltzmann machine

Markov Chain

Direct

GSN

GAN

Graphic 3.1: Taxonomy of generative machine learning models from NIPS 2016 Tutorial:
Generative Adversarial Networks by Ian Goodfellow. The typical use of vanilla neural
networks as sequence predictors places them in the "tractable density" category.

3 LITERATURE SURVEY 55

• Feedforward Neural Network (FFNN) or Multilayer Perceptron (MLP):

Feedforward models have been used sparsely but throughout the entire history of music
modelling with neural networks. An early example is a 3-layer network used to classify
chords (Laden and Keefe, 1989). The authors represent pitch in different ways and
conclude that a distributed representation performs best. However, the compared setups use
different amounts of training data making the comparison slightly unfair.

Another early example of feedforward networks uses a 3-layer network to determine the next
chord given the three preceding chords as well as the melodic context of the chord to predict
(Hild et al. (HARMONET), 1991). Time slicing on quarter notes is used and after
predicting the chord, another feedforward network ornaments the chordal structure with
eighth notes.

A model called CBR (Creation By Refinement) uses a 4-layer critique network to classify
a musical sequence according to some criteria (typically binary indicating if the music is
plainly good or bad) (Lewis (CBR), 1991). After training, the learned weights are held
fixed along with an output label and the model successively alters randomized input until it
has converged to an input pattern that adheres to the given output label.

Also using feedforward networks, Neuro-Musician learns to respond to a multiple measure jazz
solo in a way that is consistent in style (Nishijima and Watanabe (Neuro-Musician),
1993). The model uses several networks and starts by modelling contour, which is a reduced
description of the melodic content over a few measures. The resulting contour is then matched
with an indication of the note density in the passage after which several networks model a
few measures each. The output consists of measures of rhythmic, dynamic and pitch content
which is the final output after the rhythmic content is refined by a network that models
expressive timing. All in all, the network learns how to model a solo based on the melodic
skeleton along with the density of the input and when used after training, the idea is that it
should manage to alternate in real time with a jazz player, answering the solos of the latter.

Inspired by HARMONET, Hörnel and Menzel successfully trains several HARMONETs to
recognize different chorale styles and use that as the starting point for their new architecture
(Hörnel and Menzel (MELONET), 1998). MELONET uses a HARMONET to harmo-
nize a quarter note chorale after which three separate feedforward networks model elaboration
of the quarter notes to groups of four sixteenth notes in Pachelbel chorale style. The authors
refer to these groups as motives and mean that there are melodic motives, that have small
leaps and dissolve dissonances, and harmonic motives, that have larger leaps that outline a
harmony. The networks work on different hierarchical levels where the first network, called a
supernet, learns to predict a motive class based on the quarter note skeletal context as well
as current harmony and most recent motive class along with a few other things. The chosen
motive class is then forwarded to another network, called the subnet, that models the actual
motive given the current and next quarter notes and current harmony. The new motive is
then classified by the motive classifier and forwarded to the supernet for the next quarter

56 3 LITERATURE SURVEY

note to embellish. RProp (Riedmiller and Braun, 1993) was used during training as
opposed to backpropagation. The model is successful with test panels and is elaborate in its
construction.

Using tension as an extra input to model chords off of the fourth movement of Prokofiev’s
classical symphony has been done with feedforward networks (Melo and Wiggins, 2003).
The authors define tension in music as "... how unfinished the piece of music would sound
if it stopped at that point". The tension profile has a value for every bar and in the first
phase, one network models the next bar chord along with its tension given a number of chords
preceding it. A chord is recorded from each bar in pitch class representation by summing the
fraction of the bar a given pitch class (sum is over individual pitches in the pitch class) is
sounding. In the next phase, another feedforward network produces a stream of eighth notes
based on a previous window of eighth notes along with the current tension profile. The last
network outputs a piano roll representation and can, in principle, model polyphonic music
without restrictions. A threshold for when a note is to be included or not is derived based on
how it affects the accuracy when compared to the original training data. The tension profile
is acquired by averaging over annotated tension profiles from a number of test individuals.
The authors are somewhat disappointed and state that a test panel thought that the music
"sounded like random music, while admitting that some ’order’ and even ’style’ could be
noticed".

Using a suffix tree to extract patterns, in terms of intervals, and using a Markov model to
transition between these derived motivic patterns, a feedforward network has also been used
as a subcomponent only to decide the starting pitch and duration of the pattern sampled
from the Markov model (Verbeurgt et al., 2004).

Using feedforward networks as the main architecture became less and less common as the
recurrent networks (and more complicated architectures) grew more popular and in one
of the last publications to use a feedforward network only, NeuroComposer models first
species counterpoint, also known as note-against-note counterpoint (Adiloglu and Alpaslan
(NeuroComposer), 2007). The authors give a great resume over different methods to
represent music (and even gives a fresh, coined, terminology to these) and arrive at using
different representations for music when modelled as input and output (to the actual network.
not to be mistaken for the input representation that is otherwise referred to as input which
is the representation before preprocessing). NeuroComposer composes a counter-melody to
a given melody using a sliding windows technique, as the authors call it, and takes the three
last and the current note of the melody along with the three last notes of the counter-melody
to compose the next note of the counter-melody. In the input, a pitch representation almost
identical to Mozer’s (Mozer (CONCERT), 1990; Mozer and Soukup (CONCERT),
1991; Mozer (CONCERT), 1994) is used for the seven different pitches whereas in the
output, pitch classes along with an octave specification output node is used to predict the
next note of the counter-melody. Both counter-melodies above and below the given melodies

3 LITERATURE SURVEY 57

are learned and since the two voices have the same, monotonous, rhythmic pattern no further
device for durations is needed than a rearticulation node for every note, indicating whether
it was held from before or not. Even though the network learns some structural properties
of the input data, the output contains mistakes and sounds uninteresting at times, the latter
a property not rare in first species (note-against-note) counterpoint in general.

Even though using feedforward networks only grew less and less common, feedforward net-
works have occasionally been used as a subcomponent in larger systems based on the use of
multiple different neural network architectures for different subtasks (Bretan et al., 2016;
Mehri et al. (SampleRNN), 2017; Hadjeres and Pachet (DeepBach), 2017; Hen-
nig et al. (Classifying VAE, Classifying VAE+LSTM), 2017; Walder and Kim
(MotifNet), 2018).

One late use of feedforward networks is ChordRipple which uses word2vec along with the skip-
gram model from linguistics adapted to chords (Huang et al. (ChordRipple), 2016).
The skip-gram model uses learnable embeddings (word2vec implies that each word is embed-
ded with learnable weights in a vector) for each word in the input vocabulary and adapts
these during learning based on what the surrounding words, according to some window size,
are. The corresponding method in music implies embedding chords and adjusting this em-
bedding according to what the surrounding chords might be. By using cosine similarity, after
learning, between learned embeddings one might find substitute chords that usually appear
in the same context. One might also use the network to get suggestions for surrounding
chords given a chord. With this principle, the authors behinds ChordRipple build an entire
tool for reinventing and varying chord progressions which they try out on an audience of
composers. With the tool, one might replace a single chord, or replace a whole context of
chords, something that the authors call a rippling effect of changing a single chord. The tool
is appreciated and the authors show that the embedding layer arranges the chords into the
circle of fifths when visualized with dimensionality reduction techniques.

Also interested in modelling chord embeddings using a skip-gram model, Chord2Vec uses
several models with embedding layers to see which performs best (Madjiheurem et al.
(Chord2Vec), 2016). The simplest model is a feed-forward network with an embedding
layer that should output the next and previous chords given an input chord. As expected
this model performs worse than NADE-inspired and LSTM-based models. More can be read
in the LSTM subsection.

• Simple Recurrent Neural Network (SRN):

A Jordan network was used in one of the very first attempts by Todd to model monophonic
music in which learning took place after each time step (Todd, 1988; Todd, 1989). The
Jordan network generalized to new compositions after training by setting the plan units
associated with each input patterns to new, unseen, patterns which led the network to, after
being seeded with one or a few notes, compose melodies of its own. Inspired by Todd’s
approach, Freisleben extends it by adding what is called a sequential memory where only

58 3 LITERATURE SURVEY

the first context unit receives the last step outputs. In the time step to come, it forwards
its most recent state to the second context unit after which it receives new data from the
model output (Freisleben, 1992). The sequential context is used along with the same,
parallel (called exponential), context that is used by Todd as well with the motivation that
the network should handle musical repetitions better. Several sets of output units are used
working with the same two sets of context units to form polyphonic music.

For a series of publications, sometimes together with others sometimes alone, Gang uses and
refines Jordan networks along three lines of experiments.

In the first series of attempts, Gang and Lehmann (and later Wagner) studies harmonization
of melodies in a model later called a Human Neural Network (HNN) (Gang and Lehmann,
1995; Gang et al. (HNN), 1997; Gang et al. (HNN), 1999). First a feedforward
subnet is used that take as input the collective pitch content of a window of music (typically a
measure) and then outputs key notes of the window (Gang and Lehmann, 1995). These
are then used as additional inputs to the Jordan network with two hidden layers where the
recurrent input units corresponds to chords. The main hidden units model an octave of twelve
pitches that are then partially connected to the 14 output units corresponding to the seven
triads of C major along with the seven extended seventh chords of the same. Later, the model
is extended to work in real time whereby harmonization is done simply by feeding the network
notes, on the first and third beat only, sequentially while predicting harmonies (Gang et al.
(HNN), 1997). At this point, the main sequential net has a subnet modelling meter as
alternating between the first and third beat of the network incorporated. This setup is then
further enriched with inputs corresponding to location in a phrase as well as context memory
in both melody and harmonies, as opposed to in the harmonic progression only, as was the
case earlier (Gang et al. (HNN), 1999).

In the second series of setups, sequences of harmonies are investigated with the purpose
to model human musical cognition and the Degree of Realized Expectation (DRE) (Gang
and Berger, 1996; Berger and Gang, 1997; Berger and Gang, 1999). Berger and
Gang model harmonies as combinations of pitches in a network conditioned on beat. The
model is taught harmonic progressions and is then fed progressions that are surprising in
some way (either due to metric position or pitch content) after which the authors model the
cognitive experience of musical surprise in terms of the network prediction probabilities and
how these vary as a function of the DRE. Both duple meter (Gang and Berger, 1996)
and duple and triple meter in parallel (Berger and Gang, 1997; Berger and Gang,
1999) is tried in order to account for how meter and beat affects harmonic expectation. In
the latter, expectations on meter is also formalized as an output of the network. The authors
argue that meter and harmonic sequences create latent expectations, even with theoretically
inexperienced listeners, but suggest that determining the next chord as a negotiation between
harmonic and metric state only may be somewhat ambiguous. An underlying conclusion of
the contribution of these works is a philosophical one dealing with compositional strategies

3 LITERATURE SURVEY 59

concerning how to know when to surprise and when not, and the authors conclude by citing
Strunk in From Mozart to Stravinsky: "... to play on expectation he must first arouse it.
To secure emphasis he must first exercise self control. He cannot afford to be continually
surprising to his listener. He must be simple before he is complex, regular before he is
irregular, straightforward before he is startling".

Finally, a hybrid approach with a utility-based agent composing counterpoint is suggested
called NetNeg (Goldman et al. (NetNeg), 1999). Here, Gang teams up with Goldmann
et al. modelling first species counterpoint, also known as note-against-note counterpoint.
Two agents use a utility function to negotiate their next notes from activations given by
a Jordan network modelling both melodies simultaneously, after which the decision of the
agents is input for the next step predictions. The network models melodic contour in terms
of intervallic leaps and melody direction to improve the results.

In the CHIME (Computer Human Interacting Musical Entity) model, a Jordan network
models jazz melodies conditioned on chords with the purpose to trade jazz solos in real time
(Franklin (CHIME), 2001). The network is first trained traditionally on some jazz solos,
then weights are added and the trained model is trained anew with actor-critic reinforcement
learning. At the point of performance, the input to the network is the solo played by the live
player that the network is supposed to construct a variation of.

Elman networks were also used early on, for example in the CONCERT architecture where a
network is trained to produce Bach melodies (Mozer (CONCERT), 1990; Mozer and
Soukup (CONCERT), 1991; Mozer (CONCERT), 1994) using a "psychoacoustically
motivated" pitch representation. Long-term structure is taken care of by experimenting with
setting the tendency to forget previous context to different values in the context units, thus
partitioning them into segments which, at the extreme, remembers over a long time or a short
time. An Elman network has also been used and trained with a genetic algorithm according
to a sum of weighed fitness functions that supposedly model music according to the style of
Bartók as well as to general music theory rules (Chen and Miikkulainen, 2001).

One of the first uses of a model referred to as a recurrent neural network only, with no
reference to Jordan or Elman networks, leaves a lot of details unexplained (Corrêa et al.,
2008). A novelty in the work is that nature is used as inspiration during composition of
melodies, which is done by taking a contour from a landscape and turning it into a curve
in 2D with values fed to the network which predicts melodies, measure by meaure, with a
relative representation of intervals. A shortcoming of the publication is that it is not clear
whether a Jordan network or an Elman network is used and at times, it even seems as if a
feedforward network is used where the output of one iteration is used as input to the next
(thus without any recurrent units holding context). However, the input units are specifically
mentioned as recurrent which indicates that it might be a Jordan network, but the recurrent
input seems to come from the last step output which suggests that the network might not
have any recurrent connections at all. It is also unclear whether the landscape contour is fed

60 3 LITERATURE SURVEY

as a whole during composition, in which case it resembles a plan, or as a sequence. Finally, it
is not known whether landscapes are used during training or not and, if so, if the curves are
generated from music or taken randomly (to associate music with arbitrary curves, much like
a plan input again). The idiomatic use of the network (with extra input) as well as the time
leads to a classification as a Jordan network but as said, this remains unclear. Inspiration
from nature reveals an imaginative approach, however, that along with the use of Gaussian
noise in the input units are the biggest contribution of the work. The latter is used to
combat the bad aspects of teacher forcing and makes the network exposed to more various
input during training. The risk is otherwise that the use of teacher forcing leaves the network
unexposed to certain inputs that might occur during composition (when teacher forcing is
no longer applied) and which might lead to unexpected and degenerate behaviour. A self-
organizing map (SOM) network is also tried out for composition and judging from the results,
the latter performs poorly with large interval jumps constantly in a very unmusical way. The
first approach however leads to melodies that seem more music-like. The publication also
mentions that their model is trained with backpropagation through time (BPTT) along with
online learning in a conflicting way.

One of the last references to an Elman network in music modelling uses a source of chaos as an
additional input, similar to how plan units (Todd, 1988; Todd, 1989; Freisleben, 1992;
Gang and Lehmann, 1995; Gang et al. (HNN), 1997; Goldman et al. (NetNeg),
1999; Gang et al. (HNN), 1999; Franklin (CHIME), 2001; Franklin, 2005) or
nature landscapes (Corrêa et al., 2008) have been used. The chaos is an additional melody
with a varying number of notes that is derived from different aspects of the training melody
as, for example, solutions to first order differential equations arising from different measures.
The chaotic melody is used as additional input during training, which is done with one
melody only, after which the trained network should generate a melody of its own. Attempts
are made with a varying number of notes in the chaotic melody and the authors, arguing that
originality and complexity in music is related to a certain degree, show that their network
manages to produce melodies that are similar compared to the original but still complex and
therefore original and qualitative. Several measures are devised to express similarity and
difference in melodic complexity between melodies and comparisons are made when training
the network with none up to twenty notes in the chaotic melody. The publication is vague
on some points and it is unclear what representation the authors use for duration as well
as several details regarding how the chaotic melody is presented to the network. One might
also consider it self-evident that the trained model will produce output more dissimilar to
the input melody the more additional content, e. g. the longer the chaotic melody, it has
been trained with.

3 LITERATURE SURVEY 61

• Recurrent Neural Network (RNN):

Many later uses of RNNs (as well as LSTMs and GRUs) only use the model to account
for temporal context only, as opposed to also using its hidden state and one or more fully-
connected layers to generate output (Boulanger-Lewandowski et al. (RNN-RBM,
RNN-NADE), 2012; Goel et al. (RNN-DBN), 2014). These models generally have
some other architecture to generate the actual outputs, such as an RBM (Boulanger-
Lewandowski et al. (RNN-RBM, RNN-NADE), 2012), a NADE (Boulanger-
Lewandowski et al. (RNN-RBM, RNN-NADE), 2012; Sigtia et al., 2014), a
DBN (Goel et al. (RNN-DBN), 2014) or a VAE (Bayer and Osendorfer (STORN),
2015). Another approach is to use an RNN as a baseline, or reference, when trying out more
sophisticated models (O’Brien and Román (MusicNet), 2016).

When using a music model to impose contraints and guidance in Automatic Music Tran-
scription, an RNN is trained to act as a prior, trained with both stochastic gradient descent
(SGD) and Hessian free optimization (HF) (Sigtia et al., 2014). Needless to say, the latter
results in a better model. The authors try an RNN-NADE as well which they use as their
main model. More about this publication can be read under the subsection on the NADE.

Short after the beginning of the recent era, several improvements to RNNs used music as
a benchmark problem to be able to compare the performance of their addition to models
with that of Boulanger-Lewandowski et al. (Boulanger-Lewandowski et al. (RNN-
RBM, RNN-NADE), 2012). An early example evaluates mixed improvements to RNNs:
gradient clipping, Nesterov momentum, the use of ReLU as an activation function as opposed
to the sigmoid or tanh functions and the use of leaky integration (Bengio et al., 2012).
The latter is a technique where long-term dependencies are taken care of by updating the
hidden state of a unit with one fraction from the old state and one (the remaining) fraction
from the output of the forward propagation rule. The improvements are also tried on the
RNN-NADE (Boulanger-Lewandowski et al. (RNN-RBM, RNN-NADE), 2012).

Another example evaluates, as part of the deep learning revolution, different ways to make
RNNs deeper (Pascanu et al. (DT(S)-RNN, DOT(S)-RNN, sRNN)), 2013). The
most straightforward way to achieve this is to stack several RNNs on top of each other with
the model output coming from the top one. Each RNN has its own series of hidden states and
forwards its output to the next layer RNN, effectively increasing depth and the capability
of modelling complexity. However, there are several other ways to increase depth in RNNs
and it turns out that extra layers can be inserted in the input layer, hidden layer or output
layer. An extra layer in the input layer allows for deeper feature extraction from the input,
whereas an extra layer in the output function allows for outputs changing more rapidly as
a function of new hidden states. Extra layers in the transition between hidden layers allows
for the hidden layer to change more dynamically, as a function of new input, and ultimately
relates to the principle of highway networks. Finally, skip connections can be inserted to skip
extra layers in the case where these mechanisms are needed only occasionally. Three final

62 3 LITERATURE SURVEY

architectures are tried on music moddeling: the DT(S)-RNN, with deep hidden transitions as
well as skip connections, the DOT(S)-RNN, with deep hidden to hidden and hidden to output
transitions as well as skip connections, and the sRNN, which consists of stacked RNNs. The
DOT(S)-RNN is tried both with regular units as well as maxout (Goodfellow et al., 2013)
and Lp units (Gülçehre et al., 2013) in which case the latter performs the best. Maxout
units are pooling units that generalize several regular non-linear functions used such as ReLU
and leaky ReLU), and Lp units are further a generalization of maxout units.

Also, treating music as a benchmark problem, the notion of fast dropout (Wang and Man-
ning, 2013) is ported to RNNs and subsequently tried on music (Bayer et al., 2013).
The idea is that neural networks benefit from regular dropout in that they become more
robust, however, it takes longer time to train since the dropped out units do not get their
weights updated. This is remedied by the use of fast dropout where dropout is approximated
during weight updates instead. This is further taken to recurrent levels and tried out on
benchmark datasets.

When attempting to create and concretize the notion of unfulfilled expectations in music,
something that the authors argue that even untrained listeners are very good at, an RNN,
an LSTM and a so-called clockwork RNN (cwRNN) (Koutník et al., 2014) are trained
on Bach chorales (O’Brien and Román (MusicNet), 2016). This is a subject that has
been explored before and as always, it is hard to determine what the authors are after; in this
publication, they conclude that perplexity, a measure related to the reciprocal of probability,
increases when unexpected sequences of music occur. This, in turn, is very expected since
the very definition of unexpected sequences in this context is a sequence that don’t occur
often in the training data, and thus the perplexity for such a sequence will be high since
the probability of it will be low. It then seems like circular logic to inspect and argue about
the phenomenon in question. What is interesting however is that the authors use a cwRNN
which effectively models musical sequences better than both the RNN and the LSTM. The
cwRNN has a partitioned hidden state where parts of the state are updated at different
time step intervals, typically in terms of powers of two. This can be visualized in different
ways and one can think of it like the hidden layer weight matrix is upper triangular which
results in that only slower partitions have recurrent connections to faster but not vice versa.
Hidden states are also only updated for partitions that should be updated at the given time
step. The resulting behaviour is that the fastest partition updates at every time step, the
second fastest updates every second time step (and then it only has recurrent connections
from slower partitions and it does not change at all in the intermediate time step) and so on.
The idea is that long-term structure should be preserved and available at all times, similar
to how time-delay connections are used. The application is interesting and the authors argue
that the cwRNN, as opposed to the RNN and LSTM, generates music that are consistent
and in style. Unfortunately, no samples are available.

3 LITERATURE SURVEY 63

• Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU):

As with RNNs, many recent architectures with LSTMs and GRUs only use the model to
account for temporal context only, as opposed to also using its hidden state and one or more
fully-connected layers to generate output (Lyu et al. (LSTM-RTRBM), 2015; Vohra
et al. (LSTM-DBN), 2015). These models generally have some other architecture to
generate the actual outputs, such as an RBM (Lyu et al. (LSTM-RTRBM), 2015) or
a DBN (Vohra et al. (LSTM-DBN), 2015). Sometimes, LSTMs have also been used as
a subcomponent of larger systems that model different subtasks with different architectures
(Bretan et al., 2016; Mogren (C-RNN-GAN), 2016; Yu et al. (SeqGAN), 2016;
Bretan et al., 2017; Chen et al. (FusionGAN), 2017; Guimaraes et al. (OR-
GAN), 2017; Hadjeres et al. (GLSR-VAE), 2017; Hadjeres and Pachet (Deep-
Bach), 2017; Hennig et al. (Classifying VAE, Classifying VAE+LSTM), 2017;
Roberts et al. (MusicVAE), 2017; Roberts et al. (MusicVAE), 2018; Sabathé
et al. (DRAW), 2017; Teng et al., 2017; Tikhonov and Yamshchikov (VRASH),
2017; Eppe et al., 2018; Koh et al. (C-RVAE), 2018; Simon et al. (MusicVAE),
2018). Finally as with RNNs, sometimes LSTMs are used as somewhat of a baseline when
trying out more complicated architectures (O’Brien and Román (MusicNet), 2016;
Yu et al. (SeqGAN), 2016).

Beginning what is in this work referenced to as the middle era, Eck and Schmidhuber uses
an LSTM for the first time in the history of music modelling with neural networks to model
so-called twelve-bar blues (Eck and Schmidhuber, 2002). Their publication is thorough
and clear and references both Todd and Mozer’s CONCERT and evaluates different aspects
in relation to these. In a first experiment, only a chord progression is modelled as a baseline
and in the second, a pentatonic melody is modelled along with this chord progression which
stays the same in all experiments. Two LSTM networks are used: one models chords only
and the other melody but the latter gets fed the output of the former to account for melody.
This is the first example of a publication where an online link to samples is available, alas
not working at the time of this writing. It is, however, really simple to find a working website
online holding the same content and samples.

Also using LSTMs, both trying out the new architecture against older ones as well as testing
a new representation of music, two toy problems and an attempt to model an AABA melodic
sequence is undertaken (Franklin, 2004; Franklin and Locke, 2005; Franklin, 2006;
Franklin, 2005). The new representation is inspired from Mozer’s distributed representa-
tion of pitch as well as the chord representation used by Laden and Keefe, later refined by
Mozer, and uses the notion of seven circles of thirds. With this representation, seven bits
is needed to represent the pitches in an octave which is compared to the twelve bits needed
both for a binary local solution as well as the distributed representation as laid forward by
Mozer (height input removed for comparison so that Mozer’s representation is only applica-
ble for an octave). A similar improvement is shown in terms of chordal representation and

64 3 LITERATURE SURVEY

even though the author(s) manage to more clearly prove that LSTMs are superior to earlier
architectures, the major improvement with the data representation seems to be in terms of
sparsity and learning speed. Later, a fine-grained representation for duration is added, and
two separate networks modelling duration and pitch are used to model a written version as
well as a live performed version (thus testing the duration representation on micro-timing)
of the song Afro Blue (Franklin, 2006). Franklin argues that conditioning on chords and a
first-beat-of-the-measure marker is more successful than when omitting the chordal structure
input. The very same setup, now with interaction between the networks, in the form of the
input of last step duration prediction to the next step pitch prediction and vice versa, is later
used to learn several jazz songs (Franklin, 2005). At this point, plan units are incorpo-
rated as well and by inputting an unseen chord progression along with a plan, the network
can generalize and compose new melodies after training.

When Eck takes on LSTMs the next time, he does it with LaPalme and with several new
devices (Eck and LaPalme, 2006). First of all, the inputs, being last time step pitch and
chord, have been augmented with data from corresponding places in earlier bars. Typically,
material from two, four and eight bars earlier is supplied in what is called time-delay con-
nections. The purpose of these is to simplify the processing of repetition, which the authors
argue is a central component of music and, as such, also hard to learn. The input is at every
time step given both to the LSTM network, for long-term dependencies, and to a feedfor-
ward network, for short-term dependencies. The output layer predicts the next chord and
pitch and bases its predictions both on the output from the LSTM network and feedforward
network. Eck and LaPalme train a vanilla LSTM and a feedforward network for baseline and
show that their improved model performs better.

Shortly after the GRU surfaced, preliminary experiments indicated that it was hard to dis-
tinguish from the LSTM in terms of performance. Taking this concept to several modelling
scenarios, among others music modelling, GRUs were tested against LSTMs, using an RNN
with tanh as an activation function as baseline (Chung et al., 2014). The benchmark
datasets from Boulanger-Lewandowski et al. were used (Boulanger-Lewandowski et al.
(RNN-RBM, RNN-NADE), 2012) and the models were kept quite small to avoid over-
fitting which could otherwise ruin the comparison. Furthermore, the authors discuss the
added functionality of the LSTM and the GRU, compared to the regular RNN, and give
insightful tips as to why they have increased potential. After experiments, however, the au-
thors conclude that even though they see hints of GRUs having the capability to beat LSTMs
sometimes, they do not have enough evidence to suggest that this is the case in general. They
manage to show, however, that the LSTM and the GRU is superior to the vanilla RNN, even
though the latter surprises at times and performs remarkably well.

An early attempt with an LSTM only in the recent era has drawn inspiration from the
trend-setting article by Boulanger-Lewandowski et al. (Boulanger-Lewandowski et al.
(RNN-RBM, RNN-NADE), 2012) and uses a piano roll representation and the JSB

3 LITERATURE SURVEY 65

chorales dataset (Liu and Ramakrishnan, 2014). The Rprop learning algorithm (Ried-
miller and Braun, 1993) is used and the authors show its superiority, both in terms of
learning speed as well as final accuracy, when compared to BPTT on the same problem. No
preprocessing of input data is done and the architecture is quite simple and traditional, thus
the novelty lies in the use of something traditional in the recent era as well as the use of
Rprop. Also, the authors make an effort to use an evaluation metric which they however
conclude do not correlate with the quality of the output music.

LSTMs and GRUs were tried against each other again in an attempt to model audio (Nayebi
and Vitelli (GRUV), 2015). The model named GRUV uses spectrograms in the frequency
domain instead of the actual audio in the time domain. In the former, amplitude of audio is a
function of time whereas in the latter, it is a function of frequency in a signal which is a binned
representation of some time interval. During preprocessing, N mono audio frames samples
at 44.1 kHz are transformed into N real numbers and N imaginary numbers, effectively
doubling the size of the input. The model then predicts the next spectrogram which can be
transformed back into audio. Quite to the contrary of some results, the authors indicate that
LSTMs perform slightly better in numbers, but much better when inspecting the results. The
available sample sounds like distorted music ("musically plausible" according to the authors)
whereas, apparently, the output from GRU models were more like white noise altogether.
An interesting detail is that the acronym GRUV only appears once and its meaning is not
explained.

Representing chords and drum patterns as text, linguistic models have also been used on
music (Choi et al. (char-RNN, word-RNN), 2016). The authors use a char-RNN and
a word-RNN (really LSTMs here) to model jazz chord progressions as text. The char-RNN
models the text as characters and the word-RNN as words. The former has the advantage
that only 39 characters are used whereas instead, the sequences are very long. The word-
RNN, on the other hand, has 1259 different words but shorter sequences. A temperature is
used during output to determine whether the models should be adventurous or play it safe
during generation. The authors conclude that both of the models work well for this task.
Later, drum patterns from Metallica are used as training data, using a 9-bit binary vector to
signal activities across nine different drums of a drum kit. Here, only 4 characters are used
(0, 1, space and a bar token) whereby a total of 512 possible words can be formed, however
not all present in reality in the training data. This task results in very long sequences for the
char-RNN which performs much worse than the word-RNN. Results sound good and musical.

Reviving some of the techniques from the early period, where a lot of implicit knowledge
was encoded directly into the network, the authors behind the Song from PI publication uses
a 4-tiered structure, where each tier is a 2-layer LSTM, to model pop music (Chu et al.,
2016). Much statistical information from the training data is used to determine additional
input annotations, such as a melodic profile and scale type. Time-delay connections are
also provided in each tier from different previous time steps. The bottom tier generates the

66 3 LITERATURE SURVEY

melody using most of the extra inputs provided, the output is then used as input to a press
tier which determines the duration of the chosen melody note. The press layer simply counts
and is reset to 1 whenever an articulation is made. The output of melody tier is also used,
together with time-delay connections to determine a chord and an accompaniment for each
time step as well. After training, the model can output music which is then postprocessed
using statistical measures, heuristics and dynamic programming whereby the output chords
and rhythmic patterns are reduced to one per half bar. The authors use a panel of evaluators
to conclude that their music is preferred over music from the Google Magenta project. Some
things are unclear from the article but the music sounds good to be automatically generated,
however monotonous, similar and with a strong 2/4 feeling.

Under review as a conference paper at ICLR 2017

xt
prf

yt
key

yt
prs

yt
chd

yt
drm

xt−1
prf

yt−1
key

yt−1
prs

xt−2
prf

yt−2
key

yt−2
prs

xt−3
prf

yt−3
key

yt−3
prs

xt−4
prf

yt−4
key

yt−4
prs

yt−4
chd

yt−4
drm

...

...

...

...

...

xt−8
prf

yt−8
key

yt−8
prs

yt−8
chd

yt−8
drm

xt−9
prf

yt−9
key

yt−9
prs

...

...

...

...

...

...

...

...

...

xt−16
prf

yt−16
key

yt−16
prs

yt−16
chd

yt−16
drm

xt−17
prf

yt−17
key

yt−17
prs

Key Layer|s

Press Layer

Chord Layer

Drum Layer

Figure 1: Overview of our framework. Only skip connections for the current time step t are plotted.

Chord is a group of notes that sound good together. Similarly to scale, a chord has a start note and
a type defining a set of intervals. There are mainly 6 types in triads chords: Major Chord, Minor
Chord, Augmented Chord, Diminished Chord, Suspended 2nd Chord, and Suspended 4th Chord.

The Circle of Fifths is often used to produce a chord progression. It maps 12 chord starting notes
to a circle. When changing from one chord to another chord, moving to a nearby chord on the circle
is often preferred as this forms a strong chord progression that produces the sense of harmony.

4 HIERARCHICAL RECURRENT NETWORKS FOR POP MUSIC GENERATION

We follow the high level idea behind the Song from π to define our model. In particular, we gen-
erate music with a hierarchical Recurrent Neural Network where the layers and the structure of the
hierarchy encode our prior knowledge about how pop music is composed. We first outline the model
and describe the details and justifications for our choices in the subsections that follow.

We condition our generation on the scale type, as this helps the model to pick up the regularities in
pop songs. We encode melody with two random variables at each time step, representing which key
is being played (the key layer) and the duration that the key will be pressed (the press layer). The
melody is generated conditioned on the scale, which does not vary across the song as is typically the
case in pop music. We assume the drums and the chords are independent given the melody. Thus
conditioned on the melody, at each time step we generate the chord (the chord layer) as well as the
drums (the drum layer). The output at all layers yields the final song. We refer the reader to Fig. 1
for an illustration of our hierarchical model.

4.1 THE ROLE OF SCALE

It is known from music theory that while in principle each song has 12 tones to choose from, most of
the notes are in fact only using the six (for Blues) or seven (for other scales) tone subsets specified
by the scale rule. We found that by conditioning the music generator on scale it captures these
regularities more easily. However, we do not enforce the notes to be generated from the subset and
allow our model to generate notes outside the scale.

We confirm the above musical fact by analysing over 100 hours of pop song music from
the midi man dataset. Since scale is defined relative to a starting note, we first try to factor out
its influence and normalize all songs to have identical start note. To identify the scale of a song, we
compute the histogram over the 12 tones and match it with the 48 tone subsets of 4 scale types with
12 different start notes. We then normalize all songs to have start note C by applying a constant shift

3

Graphic 3.2: Schematic over the 4-tiered Song from PI model taken from their
publication. Each tier is a 2-layer LSTM and in the image, both the order of
conditioning as well as the time-delay connections are illustrated.

In another attempt using GRU units with the reason that they, allegedly, have the same
modelling power as LSTMs but are simpler, melodies are modelled using two networks: one
for duration and one for pitch (Colombo et al., 2016). The GRU networks have three
layers and each layer is fed the concatenation of the input of the entire network as well as the
outputs of the previous layers. The pitch network also gets the prediction of the duration as
inputs, which is not self-evident in any way. One can argue whether the use of a dissonant
pitch on an emphasized beat signals that it should have a short duration or vice versa. The
authors use their trained model both to complete an unfinished melody as well as generate
melodies from scratch and argue that both results show long-term structure and that the
model has an understanding of character, phrases and meter. No samples are available but
the written music looks good.

The next attempt with language models uses a 2-layer word-RNN (really an LSTM) on two
different word representations of music (Huang and Wu, 2016). The first representation
uses the MIDI note messages as words with all tracks concatenated after one another whereas

3 LITERATURE SURVEY 67

the second uses time slicing with the concatenation of the numeric representations of active
pitches, confined to be three simultaneously, as tokens. Learnable embeddings are used as
well and the authors show that structure arises in the latent space of these. The authors argue
that their model accomplishes music of the same quality as an RNN-NADE (Boulanger-
Lewandowski et al. (RNN-RBM, RNN-NADE), 2012), albeit without providing
listening samples.

As part of the Magenta project, a Google Deepmind machine learning project for arts, RL
Tuner is a model that uses an LSTM trained on melodies as a first step, and then uses
reinforcement learning (RL) to improve the results (Jaques et al. (RL Tuner), 2016).
The authors uses the expression note-RNNs, as an analogy to char-RNNs, to refer to RNNs
that predict the next note in a melody, and train an LSTM on this task first. Then RL takes
over and the trained LSTM is copied to three networks out of which one is held fixed and
acts as part of a reward function. The idea is that the reward function is a balance between
the predictions of this original network and general music theory rules, such that avoiding
too much self-repetition, using reasonable size leaps, mostly using diatonic steps, starting
and ending on the tonic note and more. The two other networks take part in so-called Deep
Double Q-Learning and their weights are updated to form the final model. As a reminder,
a deep Q network is a neural network that is used to approximate the Q function used in
RL when its state and action space is exponentially large, and Deep Double Q-learning is a
way of training such a network. The authors also attempt to use two modifications called
G-learning and Ψ-learning and conclude through statistics, showing that the music theoretic
rules are adhered to, that the attempt is successful. Samples sound reasonably good but
are short. Later on, the same authors (with a few additions) present the same results but
have now renamed the architecture to Sequence Tutor (Jaques et al. (Sequence Tutor),
2017). This publication is more general and elaborate and the authors, besides presenting
the same results again, also try their model on other fields of application. A listener survey
is added which indicates that the output of their three models is significantly preferred to
the outcome of the note-RNN only. More particularly, the samples from the Q and Ψ models
are preferred.

Another attempt at audio, inspired by GRUV (Nayebi and Vitelli (GRUV), 2015),
tries to model spectrograms of music but uses different architectural improvements such as
feature extractors, in the form of fully-connected and convolutional layers, and parallelization
using GRUV as a baseline (Kalingeri and Grandhe, 2016). The authors try five different
models and report improvements over GRUV for all. The authors then use a panel of 10
persons to evaluate their models and a so-called bilinear model, which has two parallell LSTM
layers that add to the same output, and a model with a 2D-convolutional embedding layer,
working on a series of time steps as a 2D map, are considered the best. The authors state
that they expect the generated output of the architecture to sound "pleasing to the ear",
albeit not necessarily like the input. However, no samples are supplied.

68 3 LITERATURE SURVEY

In Chord2Vec, inspired by word2vec and word encodings, the ensuing and preceding chords of
an input chord are predicted (Madjiheurem et al. (Chord2Vec), 2016). Three models
are tested and each have their way of first performing an embedding of the input chord,
and then predicting the surrounding chords: the feed-forward network and NADE-inspired
model uses a traditional embedding layer whereas the best performing model, a sequence
to sequence LSTM, uses the final encoder state as embedding. The first two models use a
binary traditional pitch encoding whereas the LSTM uses MIDI pitch numbers in lists that
along with a special end symbol can give rise to lists with an arbitrary number of chords.
The article leaves many questions unanswered and given that it focuses on embeddings, it is
bizarre that the embeddings are only evaluated with respect to their performance in some
datasets; it would be desirable to see some analysis on the latent space and if any structure
is formed in it.

Also trying char-RNNs and word-RNNs, under the names char-rnn and folk-rnn, the ABC
format is modelled in a larger context with headers and bar lines (Sturm et al. (char-rnn,
folk-rnn), 2016). ABC files are preprocessed and simplified but still pose as a complete
music format with both headers and the symbolic notation used by the ABC format to denote
different durations and pitches. The char-rnn processes files character by character (and
also models a format with more headers) whereas the folk-rnn tokenizes units of characters
corresponding to specific pitches. Bar lines are included and even though word-RNNs usually
have a much larger vocabulary than char-RNNs, the char-rnn and folk-rnn have vocabulary
sizes of 135 and 137 respectively, something that probably contributes to the fact that neither
model is reported as being superior to the other. LSTM units are used and both models are
trained on folk music melodies after which they generate music that are in style with folk
music and also show signs of structural patterns, even though there are syntactic errors in
the format of the output. The authors also show how to use their models as an aid in a
traditional compositional process; an interesting angle that assumes a more likely scenario,
some would say, than that of neural networks composing music without any intervention
of humans. Music produced, in part, by the model has also been played by live musicians
and evaluated by composers, adding to this angle. The sample melodies sound musical and
idiomatic of folk but wanders and lack goal bringing about a feeling of pointlessness.

Using a two-phase process, a model can be directed towards generating desired music using
music rules (grammar) (Sun et al., 2016). The idea is that an LSTM is trained once
in a regular fashion, after which the initial training set is expanded by inclusion of new
training data that adheres to the musical rules learned. During this process, the trained
model generates melodies, but every output not adhering to the rules is resampled. The
resulting data is added to the training set and the model is trained anew after which the
actual output of the model is produced. The authors use three different rules that forces
output to be in key, not take too big leaps and belong to a triad (it is ambiguous what this
means) and augment the training set by the use of these rules, both one and one and all
together. It is then shown that the output music shows an improvement in terms of these

3 LITERATURE SURVEY 69

measures when compared to the model trained after the first phase. This is, however, not
very surprising since each training set has been expanded with around 50% of data that
closely follows a given rule, thus it is elementary that the final network will show a higher
degree of these features in the output.

In an attempt to replicate the often referenced publication by Boulanger-Lewandowski et
al. (Boulanger-Lewandowski et al. (RNN-RBM, RNN-NADE), 2012), Walder
questions the conventional format of the piano roll combined with time slicing and lays
forward a new representation along with (close to) state-of-the-art results on benchmark
datasets as well as making these datasets available to the public, in versions preprocessed
in a way more suitable to the new representation (Walder, 2016). The presented model
uses a different angle and assumes that all rhythms are already predetermined. Furthermore,
the model processes polyphonic music sequentially ordered in both time (from start to end)
and in space (from low pitches to high), whereby only a single note is predicted at every
time step. Extra inputs provide information about the total time in the piece (normalized
to [0, 1], the length of the note to predict as well as the offset of the note to predict to the
current note. Time is measured in terms of quarter notes which, the author argues, allows
for arbitrarily fine-grained durations. This is unclear however since the time values seem to
be real-valued and the author does not address the problem of rounding. Inputs also indicate
whether notes from the previous time step were turned off as well as whether the note at
the last time step and the current take place at the same time (sequential polyphony). Some
of these inputs seem to overlap in information and also add information to the prediction
process that are usually not present in music modelling. The positive result of this sequential
polyphonic representation is that the network does not model each simultaneous output note
independently but instead, as in a NADE, based on all the lower notes starting at the same
time as well. Through a heuristic improvement, only pitches above a certain lower bound
(corresponding to the previous predicted note) are considered when modelling several notes
simultaneously. The author argues that the model is an improvement over both how the
NADE and the RBM are used, modelling sparse vectors of mostly zeros whereas this method
only processes what is actually played. In the preprocessed training data, inspired by MIDI
and more suitable to the proposed data representation, each song also has a unique plan and
each note is associated with a track (instrument) as well for future expansion. The author
claims that the addition of rhythmic information can easily be removed and instead modelled
by the network, but it remains unanswered what the results would sound like then; thus this
model is placed in a slightly other category than the bulk of music modelling networks and
is thus hard to compare, in terms of samples, with these. The original model is temporarily
altered for the author to be able to compare performance in a righteous way with previous
results on benchmark datasets. This alteration is slightly unclear and because of this, the
comparison remains uncertain. State-of-the-art results are close but the LSTM-DBN still
performs better, even though these results may be optimistic, according to the author. When
the model is used as intended, three categories of models are trained: models trained on each

70 3 LITERATURE SURVEY

benchmark dataset, models trained on each benchmark data augmented by transposition to
all keys and a model trained on all datasets. The sounding output available is from these
models and it is thus hard to determine how the architecture does in free composition without
predetermined rhythms. That being said, the available output sounds impressive in terms of
pitch as well and the new data representation is a novel one worthy of further investigation.
Results based on the new model are later published but it remains to be seen, however, if
this article will be considered a milestone in the future and if the preprocessed datasets and
modelling will contribute to a new benchmark for polyphonic music modelling.

Trying with both RNNs, GRUs, LSTMs and GANs, an LSTM sequence to sequence network
turns out to be best at modelling text files, character by character, with melodies in an
ABC-like format (Agarwala et al., 2017). Syntactic errors are occasionally committed
but other than that, the output looks fine, which is confirmed by a panel that, to a noticeable
degree, believes the cherry-picked output of the model to be human-made. Embeddings are
used and a certain structure in the latent space is documented as well as rather long-term
structure in the output as well as motivic use of seed content. Samples sound good and are
mostly monophonic with the exception of a few duets that are acceptable.

In JamBot, two separate LSTM networks are used out of which one models chords, on a bar
basis, that are later used to condition the other LSTM that models polyphonic music in a
piano roll format (Brunner et al. (JamBot), 2017). For chords, a fixed vocabulary is
used whereas in the polyphonic case, a standard piano roll format, not obliged to follow the
current chord, is used. The current beat, current chord, next chord and the last time step
piano roll column are used to predict the next. Polyphonic notes are sampled individually
and a temperature parameter as well as a limit on the degree of polyphony are used to
guide the generation process. The circle of fifths is derived from the latent space of chord
embeddings and samples sound good but are made harder to evaluate because of the use of
different electronic instruments as opposed to a regular piano sound. The authors claim that
long-term structure is clearly present as well as consonant music. The former is not obvious
from listening to samples.

Focusing on the transposition invariance property of music, the Tied Parallell LSTM-NADE
(TP-LSTM-NADE) and Biaxial LSTM (BALSTM) draw inspiration from CNNs and form in-
novative models with good performance (Johnson (LSTM-NADE, TP-LSTM-NADE,
BALSTM), 2017). The property of transposition invariance refers to the musical property
of two identical pieces, one a transposed version of the other, often being considered the same
piece of music (except for in very specific contexts). The corresponding property in images
is handled by convolutions in CNNs whereby a feature recognizable by a certain filter will
be recognizable no matter where in the input picture it is. The author accomplishes this in
music by modelling all pitches using the same one pitch LSTM network that takes a window
of surrounding pitch activities as well as a statistical measure over all active pitches in terms
of pitch classes and also the MIDI number currently modelled.

3 LITERATURE SURVEY 71

Fig. 3. On the left, schematic of a network instance for the tied parallel LSTM-NADE network.
This instance is responsible for producing the output probability for the note indicated with the
thick-outlined box. On the right, a schematic of an instance in the bi-axial LSTM network, show-
ing a single instance of the time-axis network and three note-steps of the note-axis network. For
each network, we concatenate a window of the note’s vicinity, bins, and MIDI note number of
the current note. Concatenations are indicated by lines connected by a solid black circle. Dashed
arrows represent time-delayed connections, blue arrows represent recurrent connections, thick
double-line-arrows represent the modified NADE estimation, and double-headed arrows indicate
sampling a binary value from its corresponding probability.

each timestep has a corresponding tied-weight note-axis LSTM network responsible
for modeling the joint distribution of notes in that single timestep. Sequentially running
the network for each note in a timestep allows us to determine the full conditional dis-
tribution for that timestep. This modification to the architecture is shown on the right
side of Figure 3, and will be referred to as Bi-Axial LSTM (BALSTM).

2.3 Training and Generation

We demonstrate our architecture by applying it to a polyphonic music prediction task,
as described in Boulanger-Lewandowski et al. [3]. We train our network to model the
conditional probability distribution of the notes played in a given timestep, conditioned
on the notes played in previous timesteps. Specifically, we interpret the output of the
nth tied-weight network instance at timestep t as the probability for playing note n at t,
conditioned on previous note choices. Training our model thus amounts to maximizing
the log-likelihood of each training sequence under this conditional distribution.

To calculate the log-likelihood of a given sequence, since we already know the notes
that are chosen at all timesteps, we can use those notes as the inputs into the model, and
then sum the log-likelihoods of the sequence being generated across all notes and all
timesteps. Letting q(n,t) represent our network’s estimate of p(t)(vn = 1|v<n), our cost
is given by

C = − 1

TN

T∑
t=1

N∑
n=1

ln
[
v(t)n q(n,t) + (1− v(t)n)(1− q(n,t))

]
,

where T is the number of timesteps and N is the number of possible notes.

Graphic 3.3: Illustration showing the
processing of a single pitch in the BAL-
STM, taken from the publication by
Johnson. The two recurrent axes have
two layers each.

Since the same LSTM network is used
for every pitch, it can be seen as feed-
ing multiple LSTM networks with tied
(same) weights in parallel. To solve the
problem of independence among simul-
taneous pitches, the author uses both a
NADE to model the output of a time
step as well as a custom solution rem-
iniscent of the previously described tied
weight network. Three models are used:
first an LSTM-NADE that takes as input
the activations of all pitches at the same
time, then a TP-LSTM-NADE where the
NADE portion is modified to produce
output based on two octaves of previ-
ous, already output, pitches at the same
time step. Finally, a model with tied weights using the previous generated note of the
same time step as well as the output of the previous part of the network for the cur-
rent note. The first is assumed to be dependent on transposition whereas the others
are assumed to be transposition invariant. The author tests these models on bench-
mark datasets and then attempts to compose with a modified BALSTM. The project
seem to have begun as an online tutorial (http://www.hexahedria.com/2015/08/03/
composing-music-with-recurrent-neural-networks/) which contains differences com-
pared to the publication in terms of input and output data. Transposition invariance is
indeed effectively demonstrated and very good results are acquired on benchmark datasets,
however not state-of-the-art. As usual,long-term structure is suffering.

Being innovative in nature, the BALSTM was later used in a three-part system designed to
compose music, more specifically solos, in the style of famous jazz soloists (De Prisco et al.,
2017). In this system, only the second part, the Predictor, is a neural network and its role is
to predict the next note n-gram given the previous one. A note n-gram is a representation of
n notes, and is a concept taken directly from natural language processing where n-grams are
typically sequences of n words or characters. Each note is represented by integers indicating
the root of the underlying chord, the quality (or type) of the underlying chord and the step
number of the melody note relative the underlying chord scale. No duration is taken into
account by the network. The authors use the value 24 for n and the first part, the Recognizer,
contains SVMs that learn to distinguish a specific soloist. The Composer, the third part of
the system, is a splicing system which has also been used in linguistics. Splicing systems are
originally inspired from DNA and are defined by tuples of sets corresponding to an alphabet,
an initial set of words and rules to form new words. In DNA, different subset sequences can be
cut at special places and concatenated to form new sequences, thereby adding combinations
to an existing set of sequences. In the proposed system, the Composer uses rules based on

http://www.hexahedria.com/2015/08/03/composing-music-with-recurrent-neural-networks/
http://www.hexahedria.com/2015/08/03/composing-music-with-recurrent-neural-networks/

72 3 LITERATURE SURVEY

suggestions by the Predictor as well as more basic rules to determine how new music can
be added to the initial repertoire consisting of the training data from a particular soloists.
Durations are added via a heuristic process at this late stage. Samples sound very impressive
and a panel of expert listeners vouch for both quality and stylistic coherence with dedicated
soloists. However, it remains unanswered whether this technique can generalize to polyphony
and entire genres of music.

Inspired by WaveNet (van den Oord et al. (WaveNet), 2016a), SampleRNN also
models PCM-encoded audio samples, one at a time, but with a different strategy (Mehri
et al. (SampleRNN), 2017). Instead of spanning a temporal context using dilated
convolutions, multiple LSTM / GRU modules are used working at non-overlapping windows
corresponding to different resolutions of the input. For example, the top module may take
as input non-overlapping windows of 16 time steps at a time whereas the next layer does
the same thing but with a window size of 8. After updating its internal hidden state, each
module passes a projection thereof to the next module in a causal way (no module may be
influenced by future time steps as a result of this). The lowest level module works at the
sample level and is a feedforward network that takes the last few time steps into account only
along with the conditioning vector from the higher module in the hierarchy. This processing
is reminiscent of that of the clockwork RNN (Koutník et al., 2014) and the authors show
great results, both in terms of results when compared to their own implementation of WaveNet
as well as when a panel of listeners is confronted with generated results. Unlike WaveNet, it
does not use external conditioning and so speech generated by the model sounds good and
language-like but is plain gibberish upon closer inspection. In their results, a plain RNN
(perhaps an LSTM or GRU) performs better than their implementation of WaveNet which
makes the reader wonder whether their implementation is correct. Musical samples sound
like music but less convincing than the output of WaveNet, despite the panel’s preference of
output generated by SampleRNN over output generated by WaveNet (as implemented by the
authors).

Published as a conference paper at ICLR 2017

Figure 1: Snapshot of the unrolled model at timestep i with K = 3 tiers. As a simplification only
one RNN and up-sampling ratio r = 4 is used for all tiers.

Here we are formalizing the frame-level module in tier k. Note that following equations are exclusive
to tier k and timestep t for that specific tier. To increase the readability, unless necessary superscript
(k) is not shown for t, inp(k), W (k)

x , h(k),H(k), W (k)
j , and r(k).

inpt =

{
Wxf

(k)
t + c

(k+1)
t ; 1 < k < K

f
(k=K)
t ; k = K

(4)

ht = H(ht−1, inpt) (5)

c
(k)
(t−1)∗r+j =Wjht; 1 ≤ j ≤ r (6)

Our approach of upsampling with r(k) linear projections is exactly equivalent to upsampling by
adding zeros and then applying a linear convolution. This is sometimes called “perforated” upsam-
pling in the context of convolutional neural networks (CNNs). It was first demonstrated to work
well in Dosovitskiy et al. (2016) and is a fairly common upsampling technique.

2.2 SAMPLE-LEVEL MODULE

The lowest module (tier k = 1; Eqs. 7–9) in the SampleRNN hierarchy outputs a distribution over
a sample xi+1, conditioned on the FS(1) preceding samples as well as a vector c(k=2)

i from the
next higher module which encodes information about the sequence prior to that frame. As FS(1) is
usually a small value and correlations in nearby samples are easy to model by a simple memoryless
module, we implement it with a multilayer perceptron (MLP) rather than RNN which slightly speeds
up the training. Assuming ei represents xi after passing through embedding layer (section 2.2.1),
conditional distribution in Eq. 1 can be achieved by following and for further clarity two consecutive
sample-level frames are shown. In addition, Wx in Eq. 8 is simply used to linearly combine a frame
and conditioning vector from above.

f
(1)
i−1 = flatten([ei−FS(1) , . . . , ei−1]) (7)

f
(1)
i = flatten([ei−FS(1)+1, . . . , ei])

inp
(1)
i =W (1)

x f
(1)
i + c

(2)
i (8)

p(xi+1|x1, . . . , xi) = Softmax(MLP (inp
(1)
i)) (9)

We use a Softmax because we found that better results were obtained by discretizing the audio
signals (also see van den Oord et al. (2016)) and outputting a Multinoulli distribution rather than
using a Gaussian or Gaussian mixture to represent the conditional density of the original real-valued
signal. When processing an audio sequence, the MLP is convolved over the sequence, processing

3

Graphic 3.4: SampleRNN uses a hierarchical structure where each layer is responsi-
ble for a window of events. The bottom layer is a feedforward network. Illustration
taken from the publication by Mehri et al..

3 LITERATURE SURVEY 73

Hadjeres, previously having showed interest in algorithmic composition where the user can
guide and influence the generation of music, has also, this time together with Nielsen, arrived
at a model which they call Anticipation-RNN (Hadjeres and Nielsen (Anticipation-
RNN), 2017). This model has two parallell LSTM networks that go in different directions,
much like in a bidirectional LSTM. However, the two LSTMs are called Token-RNN and
Constraint-RNN, the former processing from left to right, the latter in the opposite direction,
and they account for different things. The Token-RNN processes an input sequence with the
purpose to predict the next step token based on what it has seen. However, at each time
step, it is also conditioned on the output from the Constraint-RNN which takes as input a
stream of constraints from right to left. The input constraint is set to the desired value,
if the current token is to be fixed and to a special symbol if it is not. Binary masking is
used to achieve this in reality. The idea is to model melodies where some of the notes in
the melodies are fixed and the role of the model is then to supply samples of melodies where
the constraints are respected but with, hopefully tasteful, additions in between. The model
is trained on soprano melodies from Bach chorales and from an analytic point of view, the
results look promising and the idea is inspiring. However, no sounding samples are available
and there are fundamental parts of the model that are unaccounted for, for example how it
is trained given this rather particular application of RNNs.

In BachBot, four-part chorales are modelled with harmonization and composition in mind
(Liang et al. (BachBot), 2017). The publication is thorough with both novelties and
good results, all from a transparent procedure. The authors model polyphonic music with
time slicing but one note at a time in a sequential manner. Each token contains a pitch
number and a boolean indicating whether the pitch is articulated or held. Fermatas are used
as well as an explicit time step delimiter symbol. The architecture in itself is a standard
LSTM network which, when trained, can both compose entirely on its own as well as with
certain voices fixed. Thus, experiments show that depending on which voices to harmonize,
and how many voices to complete, results vary. On a website (http://www.bachbot.com) a
large group of people (2336 to the number at the time of this writing) with different levels of
musical education were asked whether they could determine which ones of pairs of pieces that
Bach composed himself. It turns out that when comparing Bach to full-fledged generations by
BachBot, the results were not significantly deviating from random guessing, which is a very
good result. It also turns out that it was easier to spot a genuine Bach piece when comparing
to pieces were BachBot had only harmonized some voices. The authors argue that this might
be because of the mix of styles that occur which might be inconsistent, and then goes on to
analyze why and when different neurons in the network fire. This is a unique analysis of its
type and even though it turns out to be non-conclusive, the activity of some neurons strongly
correlate with particular musical events. Needless to say, the samples available from BachBot
sounds great.

Inspired by a so-called Siamese Neural Network, StyleNet attempts to simultaneously model
the dynamics of two genres of music (Malik and Ek (StyleNet), 2017). In a Siamese

http://www.bachbot.com

74 3 LITERATURE SURVEY

neural network, two sub-networks with shared weights take two different inputs and outputs
a similarity measure used to, for example, verify a signature against a known original. In
StyleNet, the principle is reversed and the input data, in this case music, is forwarded to two
GenreNets, as the authors call it. A GenreNet is a bidirectional LSTM which, at each time
step, outputs a vector of dynamics (or velocities as it is more often called in the context of
music and computers) for whatever input vector it processed. The GenreNets do not share
their weights and so the input music is, after initial processing in an LSTM layer, forwarded
to both GenreNets where one recommends dynamics from a classical music point of view
whereas the other one does the same but from the perspective of jazz. After training, a
test panel cannot distinguish music interpreted by StyleNet from music played by a human
being. The authors interpret that as something good, but at the same time, the panel can
not distinguish the dynamic style of jazz from classical music. The samples indicate that
dynamics are well predicted, however, it remains unclear why the authors choose to model
two genres at a time; the number seems somewhat arbitrary and the GenreNets seem to
benefit equally from training in sequence as two different networks instead.

In a hybrid architecture where an HMM provides chord changes and song part in a two-hot
vector, an LSTM network then predicts the melody to go with it (Shin et al., 2017).
The network models pop music and the HMM uses chord pairs, equivalent to two bars, as
states whereas the emissions are one of four song parts typically found in pop music. The
HMM is trained with statistics pulled from the training data and then provides the LSTM
network with a two-hot vector. The LSTM then generates music as words, inspired by how
recurrent networks can generate a sentence when given an image as input, made up of three
components: pitch, duration and where in the current bar the pitch starts. The authors
argue that the fact that they get rid of having to supply long notes as repetitions, which is
necessary with time slicing, is beneficial and report that a large panel of test persons prefer
their generated music over some reference models. During training they regularize the model
by penalizing notes that are outside a given (rather narrow) interval. Samples have drums
added and sound good but simple, which should be the case with pop music.

In a blog post, Simon and Oore demonstrates their PerformanceRNN while stating that the
most important factors in music modelling are the dataset as well as the data representation
used (Simon and Oore (PerformanceRNN), 2017). The actual architecture is of less
significance, which is illustrated by how little space they use to explain what architecture
they use. Alas, the fact that they use an LSTM network is made clear. Furthermore, the
authors argue that micro-timing and dynamics are often neglected properties of music and
choose a data representation with this in mind. Thus, the contribution of PerformanceRNN
lies somewhere in between the symbolic domain and the signal domain (they don’t only focus
on the structural properties of music but also the live performance) and between composition
and interpretation. However, as opposed to other works in the same domain (StyleNet for
example), they focus both on composition and interpretation at the same time. In the data
representation used, each represented pitch has both on and off events and time is progressed

3 LITERATURE SURVEY 75

with a 100-dimension vector ranging from 10 ms. to 1 s. in 10 ms. increments, thus, the
authors may progress by everything from 10 milliseconds to 1 second at a time. Finally,
dynamics are also modelled in 32 dimensions. PerformanceRNN models one aspect at a
time, sequentially, in a one-hot vector and uses temperature in the output layer to determine
the amount of stochasticity in the output. Evident from the modelling aspects, the model
is trained on MIDI datasets that are taken from live performances. Samples sound amazing,
both from a compositional and a performance view, and it is hard to determine which one
of these dimensions contributes most to the great results. Perhaps, the data representation
used is beneficial from both viewpoints?

In Hierarchical RNN (HRNN), three parallel LSTM networks are used to model melodies
operating on different time scales, much like a clockwork RNN (Koutník et al., 2014) but
with the different scales in different networks (Wu et al. (HRNN), 2017). The highest
hierarchical network models entire bars, more specifically bar profiles predicting the next one
based on the current one. One level down, the beat network models beats in a similar way,
now also using input from the bar network. During preprocessing, all bars and beats are
classified, and subsequently represented by, one of 16 or 8 profiles respectively, which are also
given to the lowest hierarchy LSTM network which models sequences of single pitches. The
authors effectively show that performance increases by adding first the beat level network
and even more so when adding both the beat and bar level networks. Lookback connections
are also supplied in all three networks. A test panel indicates that the three-level network
is preferred over the other two and that the output from it is perceived as music written
by a human to a substantial level. The authors also show that their music is preferred over
melodies generated by MusicVAE and MidiNet. Samples show some long-term structure in
terms of rhythm, mostly. However, samples sound alike and there is not a big difference
between the different models.

Deep Artificial Composer, DAC, is an updated version of a previous model by Colombo et
al. and uses the same principle with two deep GRU networks that model duration and pitch,
respectively, the latter conditioned on the former (Colombo et al. (DAC), 2017). The
direction of conditioning is motivated by rhythm being easier, and more accurate, to predict,
or conversely, pitch is more informative. The authors have added an extra layer in each of the
networks, making them 4-layer networks, and have also changed the training process slightly
and added support for MIDI to their work so that even though they use ABC as an input
(which is converted to MIDI), the input of their model accepts MIDI making it more usable.
Finally, the authors use a set of Klezmer melodies, aside from the Irish folk dataset used
in their last publication, for training. They have developed their own evaluation measure
and show that even though the generated music is different from both Klezmer and Irish
folk, it resembles both, thus it has managed to generalize to a fusion of the two. With the
evaluation measure used, the authors compare subsets of fixed sizes of generated material to
same size subsets of the training data to see whether their model simply copies material or
not. Temperature governs the existence of less likely melodic progressions and the authors

76 3 LITERATURE SURVEY

are optimistic about their results. Samples sound either like Irish folk or Klezmer but show
long-term structure and are impressive as monophonic results.

Ycart and Benetos focus on choices of parameters and preprocessing when modelling poly-
phonic music, using the most basic and simple LSTM network for the purpose (Ycart and
Benetos, 2017). The authors then try out their model for an Automatic Music Transcrip-
tion (AMT) task. Besides the more general choices of parameters, including the choice of
learning rate, the number of hidden nodes in the state layers and more, a comparison is made
between using a time-based and note-based sampling method. With the former, notes are
sampled every 10 milliseconds from the input MIDI whereas in the latter case, the music is
sampled using the notion of a quarter note according to which every sixteenth note is sampled.
No matter the choice, a piano roll matrix is the result, constructed with two different sorts
of time slicing in mind: the former related to the signal domain and the second related to
the symbolic domain. The authors show that better results in terms of accuracy are acquired
with a time-based sampling process but also argue that this is because more self-transitions
are present in this data representation, thus, a model rewarding self-transitions will always
score high, no matter the music. The note-based sampling process yields a representation
where the model scores lower but instead, by inspection of next note probabilities, the au-
thors show that the model has comprehension both of tonality and meter. When tried on
the AMT task, the authors state that their models bring nothing to the table and the initial
output, before postprocessing with a model, is often as good or better than the final output.

In DeepJ, a model that has a name inspired by the concept of a DJ (Disc Jockey), the
BALSTM (Biaxial LSTM) is used with a few extensions to model polyphonic music from
23 composers (Mao et al. (DeepJ), 2018). As indicated as an extension in the original
article, the authors add extra inputs to indicate rearticulation to be able to differentiate
between long and rearticulated notes. The authors also include dynamics as an input, as well
as composer or genre. More specifically, each piece is accompanied by a composer that is
supplied from an embedding, via individual linear mappings, to each layer of the network and
the idea is that the user should be able to interpolate between these with the trained model.
Finally, the authors also use a convolution for the surrounding context notes, as opposed
to feeding them directly into the network which was done in the original paper. A panel
indicates that results are preferred over those of the BALSTM and that the music produced
by DeepJ cannot be distinguished from original music from the same genre at a significant
level. The authors show that the space of embeddings of composers has structure according
to genre and suggest that the velocity might be good as a conditioning factor in determining
what notes to play. Finally, it is indicated that DeepJ generates style-consistent music where
baroque music is more contrapuntal, classical music is more homophonic and romantic music
is more free in rhythm. Samples sound impressive and even though hints about different
eras can be traced in samples, all music tend to be quite contrapuntal which, as a machine
learning accomplishment, is great but perhaps not what the authors are looking for. Music
from the classic era is sweet and less intense and romantic music uses a broader range and

3 LITERATURE SURVEY 77

more dissonances. At http://deepj.ai, a showcase where the mix of different genres can
be played around with, unfortunately with a mixed results.

BachProp: Learning to Compose Music in Multiple Styles

way of representing standard music durations. Therefore,
we perform a final normalization step (Figure 1C) towards
a low-dimensional encoding of MIDI sequences. We map
all timings and durations to a set of 21 possible note lengths
(duration set) expressed as fractions or multiples of quar-
ter notes, similar to durations in standard music notation
softwares. Mapping to the closest value in the set (Eu-
clidian distance) removes the temporal jittering around the
original note duration. The result is dT [n] and T [n] being
constrained to a discrete set of values.

3. BachProp
BachProp is a generative model of MIDI sequences. It
combines the normalized MIDI representation, a recurrent
neural network architecture with specific inputs and outputs
at each time step, a parameter optimization procedure and
finally a method to generate new music scores from the
trained model.

3.1. Network architecture

We used a deep LSTM (Hochreiter & Schmidhuber, 1997)
network with three consecutive layers as schematized in
Figure 2A. The network’s task is to infer the probability
distribution over the next possible notes from the representa-
tion of the current note and the network’s internal state (the
network representation of the history of notes). To facili-
tate gradient propagation, we added skip connections. Note
that we employ more units for melody (represented by the
pitch P) than for rhythm (represented by the timing dT and
duration T).

In most western music, there exists a dependence between a
note duration and its rhythm. For this reason, we unrolled
in time the predictions of timing, duration, and pitch. In par-
ticular, the prediction of the upcoming pitch is conditioned
not only on the current note, but also on the upcoming tim-
ing and duration (Figure 2B). The underlying probability
distributions modeled by the artificial neural network of
BachProp are detailed in the next section.

3.2. Probability of note sequences

The artificial neural network from which BachProp draws
new samples is trained to approximate the probability dis-
tributions of music scores by minimizing the negative log-
likelihood (NLL)

L =

S∑
s=1

log
(
Pr(songs)

)
=

S∑
s=1

log
(
Pr(notes[1 : Ns])), (3)

A

B

Figure 2. Neural network architecture. A Schematic of Bach-
Prop network architecture. Blocks of LSTM units are connected
in a feedforward structure (solid and dashed arrows). Each block
contains 32, 64, 128, or 256 fully connected LSTM units, as indi-
cated. Feedforward connections have a dropout with a probability
of 0.3. The output layer depicted by yF is a softmax operator
over output units used to represent the probability of possible re-
alisation of the next note feature F ∈ [dT, T, P]. B Illustration
of input and output vectors. X[n, i] is a list of the three input
vectors xdT , xT and xP in this order at time step (n, i). These
vectors use one-hot encoding of the corresponding note feature.
The network is trained to approximate the transition probabili-
ties Pr(X[n + 1]|X[n],H[n]), where H is the hidden state of
recurrent units. The arrows depict the non linear transformation
of the input through the neural network of Figure 2A. The result
of this operation are the output vectors yF . For each note n, the
procedure cycles through 3 substeps to predict timing dT , duration
T , and pitch P (red output boxes).

Graphic 3.5: BachProp using several
LSTMs that are independently updated,
the lower figure showing the mode of op-
eration. Schematic taken from the pub-
lication by Colombo and Gerstner.

With a new so-called normalized MIDI
representation, BachProp uses three lay-
ers of LSTM networks to model poly-
phonic music sequentially by pitch, du-
ration and offset from previous event,
reminiscent of how MIDI itself works
(Colombo and Gerstner (Bach-
Prop), 2018). The authors argue that
much of the existing MIDI music is ei-
ther recorded live or exported from MIDI
writing software, all with different bad
habits or peculiarities making the corpus
of MIDI music available online a rather
diverse one. In an attempt to unify it, a
MIDI normalization routine is suggested
which converts MIDI into a low dimen-
sional but still exact and complete rep-
resentation in three steps. First all ac-
tivities from notes starting or ending are
recorded so that every note is represented
by both when it starts and ends (these
are originally separate events in MIDI).
After this, all values are normalized with
respect to the length of a quarter note.
Finally, the values are quantized to the
closest of 21 fixed durations and expressive timing and malfunctioning software with inexact
time stamps is a mere memory. BachProp models polyphonic music note-by-note where each
event has an offset from the previous event, a duration and a pitch. The network itself has
three layers with skip connection where the top and the bottom layer has individual networks
for the three properties and a single large network in the middle. The idea is that each time
step has three substeps where first offset is modelled, then duration is modelled also condi-
tioned on the current time step offset and then pitch is modelled based on both current time
step offset and duration as well as the context from before. This implies that some of the
subnetworks stand still during two of the substeps which is not closer described. The authors
use several less used datasets and a panel indicates that the output of BachProp is of the
same quality as the music it was trained on. Generated pieces have also been played by live
musicians with results that sounds great.

In MotifNet, the motive seems not to be to accomplish a model that can generate music

http://deepj.ai

78 3 LITERATURE SURVEY

superior to all other models, but rather investigate how to properly model the use of mo-
tives and the resulting self-similarity in music (Walder and Kim (MotifNet), 2018).
Therefore, the authors focus on monophonic pitch sequences, without durations, only and
demonstrate a very elaborate system with a plethora of subcomponents to handle the task.
Their starting point lies in the notion of editing distance and they first lay out the theory
after which they introduce their network which consists of mostly feedforward networks that
model different functions used to determine the editing distance. A hyperparameter sets the
maximum length of a motive (the authors use 5 when modelling music) and their model
then searches through the previous sequence for similar motives in order to find the most
likely continuation, effectively affecting the prediction. Several heuristic improvements are
needed to do this without wasting too much time and the authors use both trees and prior-
ity queues to improve over the naive solution. An analogy function, also implemented in a
neural network, designed to account for motivic similarities, but with an offset (for example
the similarity between 2, 4, 7 and 10, 12, 15) is part of the system as well. In itself, MotifNet
only has feedforward networks and a GRU network but an LSTM can be incorporated to
account for better sequential context and the authors successfully show that the combination
of MotifNet+LSTM performs best when compared to MotifNet only and a baseline LSTM.
This model consists of many parts and it is very hard to keep track of how it works. For
example, whether extra manual annotations are necessary or not is not stated and the train-
ing procedure, altogether, remains a black box. On top of this, neither written nor sounding
samples are available making it even less convincing, even though the basis of the article
addresses, and seems to partially solve, a very important and interesting topic that might
be a key to future applications in music modelling. If the community is divided into two
parts where one thinks that the model should be provided a minimum and solve all mod-
elling and structures by itself and the other one believes that conditioning and complicated
mechanisms (and perhaps interaction between different models and even then with guidance
from humans) is the way to go, MotifNet is definitely a contribution in the latter category.

• Restricted Boltzmann Machine (RBM):

One of earliest attempts to use RBMs for music is the Effective Boltzmann Machine (EBM)
which is a regular RBM used as a sequence predictor where one context is modelled at a time.
The size of the context can be varied but is often held at 3 or 5 steps in the experiments. At
one time step, given a context of 3, the network is given three sets of inputs corresponding
to a few octaves, where the used notes at a given time step are indicated. The task for
the network is to predict the middle harmony (as a set of pitches) given the preceding and
ensuing harmonies as well as the top voice (melody) of the entire context. After training, the
user determines which of the input patterns are held fixed and by sampling from the model, a
completion process occurs. By shifting patterns one step, one might then do the same thing
again, an arbitrary number of times, to complete a longer sequence in terms of harmonies or
melodies. By shifting the inputs, a chain of RBMs is formed which the authors call an EBM.

3 LITERATURE SURVEY 79

Modeling Temporal Dependencies in High-Dimensional Sequences

v(2) v(T)

h(2) h(T)...

...

h(0) h(1)

W

W' bh(1)

bv(1)
W"

bv(2)
v(1)

bh(2) bh(T)

bv(T)

(a) RTRBM

v(2) v(T)

h(2) h(T)...

...

h(1)

W
W'

bh(1)

W"
bv(1) bv(2) bv(T)
v(1)

bh(2) bh(T)

h(2) h(T)...h(0) h(1)W3

W2

(b) RNN-RBM

Figure 2. Comparison of the graphical structures of (a) the
RTRBM and (b) the single-layer RNN-RBM. Single arrows
represent a deterministic function, double arrows represent
the stochastic hidden-visible connections of an RBM. The
upper half of the RNN-RBM is the RBM stage while the
lower half is a RNN with hidden units ĥ(t). The RBM
biases b

(t)
h , b

(t)
v are a linear function of ĥ(t−1).

hidden units ĥ(t) are only connected to their direct
predecessor ĥ(t−1) and to v(t) by the relation:

ĥ(t) = σ(W2v
(t) +W3ĥ

(t−1) + bĥ). (11)

The RBM portion of the RNN-RBM (upper portion of
Fig. 2(b)) is otherwise exactly the same as its RTRBM
counterpart. This gives the single-layer RNN-RBM
nine parameters: W, bv, bh,W

′,W ′′, ĥ(0),W2,W3, bĥ.

The training algorithm is slightly different than for the
RTRBM since the mean-field values of the h(t) are now
distinct from ĥ(t). An iteration of training is based on
the following general scheme:

1. Propagate the current values of the hidden units
ĥ(t) in the RNN portion of the graph using (11),

2. Calculate the RBM parameters that depend on the
ĥ(t) (eq. 8 and 9) and generate the negative particles
v(t)∗ using k-step block Gibbs sampling,

3. Use CDk to estimate the log-likelihood gradient

(eq. 6) with respect to W , b
(t)
v and b

(t)
h ,

4. Propagate the estimated gradient with respect to

b
(t)
v , b

(t)
h backward through time (BPTT) (Rumel-

hart et al., 1986) to obtain the estimated gradient
with respect to the RNN parameters.

This procedure can be adapted to any RNN architec-
ture and conditional distribution estimator assuming
the RNN provides the estimator’s parameters (step
2) and can be trained based on a stochastic gradi-

ent signal on those parameters (obtained in step 3).
The RNN-NADE, obtained by substituting NADEs for
RBMs, allows for exact gradient computation.

Note that the single-layer RNN-RBM is a generaliza-
tion of the RTRBM and reduces to this simpler model
by setting W2 = W , W3 = W ′ and bĥ = bh in equa-
tions (10) and (11). The RTRBM was not gaining
computationally from sharing these connections, hence
untying them does not make it slower. In practice, the
ability to distinguish between the number of hidden
units h and ĥ allows to scale RBMs to several hundred
hidden units while keeping the RNNs to their (typi-
cally smaller) optimal size, improving performance.

4.1 Initialization strategies

Initialization strategies based on unsupervised pre-
training of each layer have been shown to be important
both for supervised and unsupervised training of deep
architectures (Bengio, 2009). A recurrent network cor-
responds to a very deep architecture when unfolded in
time, and indeed we find that pretraining can clearly
affect the overall performance of both the RTRBM and
the RNN-RBM. To ensure the quality of the learned
weight matrices, we found that initializing the W , bv
and bh parameters from a trained RBM yields less
noisy filters. The hidden-to-bias weights W ′,W ′′ can
then be initialized to small random values, such that
the sequential model will initially behave like indepen-
dent RBMs, eventually departing from that state.

In order to capture better temporal dependencies,
we initialize the W2,W3, bĥ,W

′′, bv, ĥ
(0) parameters of

the RNN-RBM from an RNN trained with the cross-
entropy cost:

L({v(t)}) =
1

T

T∑
t=1

nv∑
j=1

−v(t)j log y
(t)
j −(1−v(t)j) log(1−y(t)j)

(12)

where y(t) = σ(b
(t)
v) and equations (9) and (11) hold.

This deterministic objective allows the use of a second-
order optimization method for pretraining of the RNN.
Note that the RTRBM could use this strategy to ini-
tialize W,W ′, bv, bh,W

′′, ĥ(0), but in practice we have
found the initialization from an RBM more important.

4.2 Details of the BPTT algorithm

Suppose we want to minimize the negative log-
likelihood cost C ≡ − logP ({v(t)}). The gradient of
C with respect to the parameters of the conditional
RBMs can be estimated by CD using equations (4)
and (6):

∂C

∂b
(t)
v

' v(t)∗ − v(t) (13)

Graphic 3.6: Below is shown the RNN-
RBM which is an improved variant of
the RTRBM which is shown above. An
RNN is used to output biases for an
RBM whose output is then fed as next
time step input to the RNN. Figure
taken from the original publication.

With a milestone publication featur-
ing RNN-RBM, a recurrent RBM to
model polyphonic music, begins a new
era in many aspects (Boulanger-
Lewandowski et al. (RNN-RBM,
RNN-NADE), 2012). First of all, the
authors take a clear step away from the
idea of the output function of recurrent
neural networks modelling polyphonic
output in a single time step, implying
that all the pitches are independent from
each other, and suggest that something
much more powerful is needed. As such,
inspired from the Recurrent Temporal
RBM (RTRBM), they propose the use
of an RBM at every time step of an
RNN for this kind of modelling. The
idea is that each time step contains an
RBM, conditioned via the biases on the
previous temporal context of the RNN,

whose visible layer is the time step data of the music. This data is the input of the RNN
which then uses its new state to initialize biases of the next conditional RBM, and so on.
The publication if very thorough and multi-facetted and the model is first tried on some
preliminary non-musical problems. The authors then use a battery of simpler models as
well as an RTRBM, an RNN-RBM and an RNN-NADE (model similar to RNN-RBM
but with a NADE as an output function which is attractive thanks to the possibility to
calculate its exact gradients, something not possible with RBMs) and try them out on four
big datasets that they subsequently make available, both raw and preprocessed, for future
use. This publication sets the standard of end-to-end modelling with full range polyphonic
data in each time step with nothing but the network and the music to use for training.
Through its milestone character, the article also establishes the piano roll as a standard
input representation and sets baselines on the used datasets for the years to come. They
conclude that Hessian free optimization is beneficial for recurrent neural networks and that
their RNN-RBM and RNN-NADE outperforms the competition with more or less margin.
More remarkable is that the RNN-RBM actually outperforms the RNN-NADE in a series of
ways and thus, the power of the RBM remains despite its rather heuristic and impractical
training procedure. As a final undertaking, they show that using their models as priors for
music transcription improves the results significantly.

Expanding, in a natural way, on the notion of making RBMs temporally aware, the LSTM-
RTRBM uses an RTRBM but with some modifications that allow an LSTM to capture

80 3 LITERATURE SURVEY

temporal context (Lyu et al. (LSTM-RTRBM), 2015). In contrast with the RNN-
RBM, the temporal context is not entirely accounted for by the LSTM but also by the hidden
state of the last RBM, thus making it a variant of the RTRBM rather than the RNN-RBM.
The publication is short and it seems like the authors borrow results from other publications
and use it as baseline without referencing it properly. Furthermore, they obtain state-of-the-
art results on the datasets they use which makes it desirable to see a more conclusive and
elaborate report. There are samples but not clearly linked to from the article. The samples
sound better than random but are in the same style all of them and lack structure. The
authors also claim that their generated music is more pleasant than the previous state of the
art which seems to be an elusive remark.

The RBM as a model for music continues to draw interest and in convolutional RBM (C-
RBM), the authors uses a 2D piano roll matrix as the visible layer (Lattner et al. (C-
RBM), 2016). The piano roll has pitches on the vertical axis and time on the horizontal one
and the hidden layer is divided into sets of hidden nodes that get their input from different
filters that processes the visible layer. One filter is convoluted across the whole vertical
space and a fixed time span and produces one hidden activation per position. A set of hidden
nodes thus corresponds to the activations of the filter when convoluted across the visible layer
and when using several filters, several such sets of hidden nodes get their activations. After
training with persistent contrastive divergence (P-CD), the authors perform gradient descent
on input noise, adjusting it while holding everything else fixed until it converges to a piece
with desired properties. This process is called constrained sampling and the desired properties
correspond to different aspects of music, resulting in a loss function on the input piece (noise).
The desired properties need not be specified but are imitated from another input piece. The
article is long and ambitious and several measures to evaluate the work are used. Samples
from the models show deep musical quality even if the surface is sometimes a bit rough;
without constrained sampling, the output sounds rhythmically convincing with structure but
goes out of tune and shows no long-term structure. This is remedied partially by constrained
sampling. The authors argue that the musical properties and how they are represented can
be improved as well as the seams between parts of the output that seem very rough and
without a musically convincing transition. According to a measure called information rate,
the biggest improvement over baseline models comes with constrained sampling, and not
from the inclusion of the convolutional aspects.

• Deep Belief Network (DBN):

The first use of a Deep Belief Network, RBM-provisor, uses a 2- and 3-layer network with
RBMs only, generating the melody for children’s songs and jazz licks based on a 4-beat window
of chords and melody on which the prediction of the next melody note is based (Bickerman
et al. (RBM-provisor), 2010). RBM-provisor uses a fine-grained time slicing, and thus
has a visible layer with more than 1000 units with which it is able to represent both duple
and triple meter subdivisions of quarter and even eighth notes. The model is an attempt to

3 LITERATURE SURVEY 81

prove that DBNs can be used to model music. The authors generate output melodies first
according to the highest output probability which results in acceptable melodies but when
instead sampling from the next note distribution, the melodies get very uneven and jumps of
several octaves occur almost all the time which is very unidiomatic for music. RBM-provisor
further outputs melody with duplet subdivision, despite having been trained with examples
with triplet subdivision, and the authors conclude that they have shown that DBNs can be
used for music modeling, but not much more than that.

Short after the milestone publication by Boulanger-Lewandowski et al. which effectively took
us into what is here referred to as the recent era, a natural extension to their work was done
in the RNN-DBN, replacing the RBM and NADE as output functions with a 3-layer DBN
(with RBMs) instead (Goel et al. (RNN-DBN), 2014). The hidden state of the RNN
from the previous time step is now used to initialize three biases for the conditional DBN:
one for the visible layer and two for the hidden layers, as opposed to in the RNN-RBM where
only two biases were needed (one for the visible layer and one for the single hidden layer).
The publication is somewhat of a pure response to its predecessor and the same datasets are
used. The authors compare their results to the ones presented by Boulanger-Lewandowski
et al. and conclude that their work is on par with the state of the art (often slightly worse).
Differences are that no preprocessing is done to the data and so it seems that the RNN-DBN
is not trained on the actual piano rolls as made available by Boulanger-Lewandowski et al..
The authors use the lack of preprocessing as a reason for not beating the old state of the art,
something which strikes the reader as a bad motivation since doing this preprocessing should
not amount to much more time spent. The article lacks a lot of detail as well as samples but
seems to be successful, at least in terms of evaluation measures.

DeepHear is a DBN with RBM layers that is trained on ragtime music (Sun (DeepHear),
2015). The author refers to it as an autoencoding DBN but since the autoencoder uses the
same (but transposed) weights for transitions between corresponding layers in the (assumed)
encoding and decoding part, it constitutes a DBN. After greedy training with contrastive
divergence, it is fine-tuned using gradient descent and after that, sampling in the deepest
layer results in four bars of output. A technique referred to as prior sampling is also used.
Here, gradient descent is performed on the values of the deepest layer according to an error
cost measuring the difference between a desired melody and the actual music at the visible
layer. Once accomplished, the original melody, usually not clearly present in the result, is
superimposed over the output. Samples sound impressive, mostly out of a harmonization
perspective.

The authors behind the RNN-DBN later on improved their work by investigating the LSTM-
DBN, now using four RBM layers instead of three (Vohra et al. (LSTM-DBN), 2015).
The extension to use LSTMs instead of RNNs is quite straightforward and apart from this
change and the added layer, the architecture does not offer anything new. The authors
achieve new state-of-the-art results on benchmark datasets and claim that the generated

82 3 LITERATURE SURVEY

music "possesses a richness that earlier models like the RNN-RBM did not display" without
giving a shred of proof of this in the form of samples.

• Sigmoid Belief Nets (SBN):

A sequential extension of the SBN is the temporal SBN (TSBN) which uses one SBN per time
step (Gan et al. (TSBN), 2015). Instead of using the regular functions for updating the
visible and the hidden layer, extra components from the last time step SBN are included so
that the hidden layer uses both the last hidden layer and the last visible layer when initialized.
The visible layer is then sampled from the hidden layer with additional information from the
last time step visible layer. Several versions of this architecture are tried out and one such
version does not take the last time step visible layer into account at all, neither for the hidden
nor the visible layer. The authors argue that such a model is comparable to a Hidden Markov
Model (HMM) with an exponential state space and call it a Hidden Markov SBN. In this
setting, the output data of each time step is seen as an emission. The HMSBN is tried on
polyphonic music data and furthermore, it is suggested that adding layers, which the authors
also experiment with yielding the deep TSBN, does not add to the capacity. The TSBN
(or rather HMSBN) does not improve on the performance of state-of-the-art models, even
though they state that some of those measured numbers may be optimistic. Generated music
sounds better than random and has some structure both in time and in space but lacks, as
usual, long-term structure.

• Neural Autoregressive Distribution Estimator (NADE):

In some publications listed under other architectures, a NADE is used as a subcomponent
and less noteworthy in its context than the architecture under which the model in question
is listed (Johnson (LSTM-NADE, TP-LSTM-NADE, BALSTM), 2017).

In the milestone publication which started the era here referred to as the recent, a NADE was
used at every time step of an RNN, conditioned on its hidden state to incorporate temporal
context into the density modelling of each time step (Boulanger-Lewandowski et al.
(RNN-RBM, RNN-NADE), 2012). The NADE was used as an alternative to an RBM,
being more heuristic in nature, and gave the best results on several datasets when trained
with Hessian free optimization (instead of gradient descent). More can be read about this
publication under the subsection about RBMs.

An RNN-NADE has also been used together with an Automatic Music Transcription (AMT)
model (Sigtia et al., 2014). The latter is a model that transcribes audio into sheet music
and the idea is to improve its accuracy by using a music model to impose constraints and
guide the transcription. This, in turn, requires a tractable probability density function which
an RBM, despite its effectiveness, does not offer (due to the partition function being infea-
sible to calculate for larger than very small network sizes). Furthermore, the authors agree
with Boulanger-Lewandowski et al. and argue about how RNNs with polyphonic output
model output as a multi-dimensional variable where each pitch is independent of all others;

3 LITERATURE SURVEY 83

something that is utterly wrong in the context of music. The idea is therefore to use the RNN-
NADE which offers this tractable probability density as well as output at every time step
where each variable is dependent of the others (according to some ordering). The authors also
test a plain RNN, as a sort of baseline, as well and train both models both using stochastic
gradient descent (SGD) and Hessian free optimization (HF) on the unprocessed Nottingham
dataset of folk music using 200 time steps of piano roll to predict the next (single) time step.
Three configurations are then tried: the first with the AMT model only, the second with
the AMT model followed by using the music model after which the transcription is output
with both of these in mind, and the third which is the same as the second but instead, the
AMT model is run again with the music model as a prior. The results are not surprising
and the RNN-NADE is better than the RNN, HF is better than SGD and the configurations
improve the output transcription by every added step, thus the third configuration with the
RNN-NADE trained with HF performs the best (all configurations improve over baseline
significantly). The music to transcribe is a live Bach dataset and when trying to use a music
model trained on a Bach dataset instead, the authors get results that are worse than with
the Nottingham dataset. The argument is that folk music is more general and Bach music
is, in itself, harder to predict, thus, using a more general set as vague guidance is better than
using a model trained on the rather specific music by Bach.

In another contribution from Google Brain in a joint effort with University of Montreal,
both prominent actors on the machine learning scene, CocoNet is described which is an
orderless NADE realized with a CNN modelling the individual conditionals (Huang et al.
(CocoNet), 2017). Coco stands for Counterpoint by Convolution and four-voice Bach
chorales are modelled with four parallel piano rolls. In an orderless NADE, the order of the
variables are made unimportant by generalizing over all possible orderings. This sounds like
an expensive task but thanks to certain properties, this can be done efficiently (Uria et al.,
2014). Subsets of the input are masked out and the network learns to restore these from
the given context. When generating music, the user can either use ancestral sampling, as
used normally in the NADE, whereby each ungiven variable is sampled one at a time. The
authors however are better off using blocked Gibbs sampling where all the missing variables
are sampled at one time (as though they were independent). This process is repeated a
number of times and in each iteration, the number of masked out notes are decremented
(annealed), resulting in something more similar to plain Gibbs sampling early on and ancestral
sampling towards the end. Needless to say, this approach can be used to complete partial
scores or generate new music and according to the authors, it is a strength that the network
is given the chance to correct its own mistake through the process of repeated sampling. A
panel of listeners indicate that with Gibbs block sampling, the generated samples cannot be
distinguished from real Bach at a significant level. The opposite applies to the difference
between samples generated with ancestral sampling and Gibbs block sampling. Generated
samples sound indeed very good and the only thing missing in this article is a more detailed
description of how the proposed model actually can be seen as an orderless NADE.

84 3 LITERATURE SURVEY

• Autoencoder (AE):

The RAAM (Recursive Auto-Associative Memory) is a sort of autoencoder that decreases the
size of the input by recursively encoding pairs of inputs, according to some rule, until no pairs
remain after which an inverted decoding process takes place (Large et al., 1995). This
network was tried on melodies in order to determine whether a reductionist view, more specif-
ically the one offered by Lerdahl and Jackendoff, is sensible. The authors train the network
one some melodies and then test its generalization capabilities by exposing it to variations
of the previous melodies and altogether new melodies. Results indicate that reductionist
theories indeed are plausible and that such latent structural material can be learned by a
neural network.

In the recent period, DeepAutoController uses a deep architecture with two stacked autoen-
coders to model spectrograms transformed from an audio signal with Fast Fourier Transform
(FFT) (Sarroff and Casey (DeepAutoController), 2014). The authors are not very
optimistic about their results but test their architecture methodically. Training is done
greedily, layer by layer, after which fine tuning of the entire system is done. They also act
exemplary by documenting what software frameworks were used as well as list links to both
samples and source code. While training, Gaussian noise is added to make the model more
robust and a series of sizes on the different layers as well as percentages of noise are tried
out. Finally, a program to use with the model is devised in which all sorts of manipulation
of the hidden units, where the latent representation is learned and subsequently from where
new compositions start, can be done.

In one ambitious attempt to model melody using three networks for individual subtasks, an
autoencoder is used to encode musical units as a starting point (Bretan et al., 2016). A
musical unit is typically anything from one to a few measures and the input to the autoencoder
is a feature vector of a single musical unit represented in a bag-of-words (BOW) manner.
The BOW model uses word n-gram counts to represent sentences which are then not exactly
represented since the overall order is not accounted for. Taking this concept to music, the
BOW model takes duration n-grams, pitch n-grams and a lot of statistical data based on
the pitch and duration properties as a representation of a musical unit. The authors are
inspired by both recombinacy, as a means to compose as indicated by Cope (Nierhaus,
2009), and the Text-to-Speech (TTS) field, where combinations of units are formed with
good results on the task to form longer sentences. The autoencoder is trained using a loss
that is based on cosine similarity. The input data is augmented by both transposition and
rhythmic alterations after which a total of 80 million units are acquired. To reconstruct a
measure from a BOW representation, cosine similarity is measured against the musical units
of the database after which the one with the largest similarity is picked. At this point, the
authors can input a melody and then output a variation of it according to their model; a task
that produces good results. Linear interpolation between units can also be accomplished in a
satisfactory way. Expanding the model, the authors now use a feedforward network as a Deep

3 LITERATURE SURVEY 85

Structured Semantic Model (DSSM); a deep network that creates an embedding of its input
with the purpose of aligning such inputs that should be considered similar according to some
measure. The same BOW model as earlier is used with an even smaller latent representation
as output. The idea is that musical units is summarized and the DSSM is trained by a loss
based on cosine similarity to map consecutive units to similar vectors in the latent space.
After training, the DSSM is used to measure which of a set of candidate units (given in
BOW representation), given a first, that is most appropriate to use as a continuation. This,
along with an LSTM that, given a few units of music to determine the most likely ensuing
pitch, is used to accomplish a composition model that samples from the latent space of the
autoencoder and uses the LSTM and DSSM to determine which units should be attached
to an emerging composition that begins with a seed. Statistical results leave much room for
improvements but listening samples are impressive but monophonic.

Again using autoencoders, Bretan, along with colleagues, attempts to create latent represen-
tations of bars of music (Bretan et al., 2017). Latent representations are created using
several different models which uses convolutional layers before flattening to fully connected
layers yielding a 100-dimensional latent representation of each bar. Denoising autoencoders
are tried (with several different kind of denoising properties) as well as predicting and con-
text autoencoders. At one point, only an encoder is used and the output is mapped to a
categorical output for each of the composers that contributed to the training data. After
creating a database of latent representations, two tasks are tried out. First, in the prediction
task, an LSTM is given seven consecutive bars, as latent representations, and are to predict
the eighth. Secondly, the composer of each latent representation is to be determined. Not
surprisingly, the latent representations created by a context autoencoder, designed to predict
the surrounding bars (in additive form) based on an input bar, and a latent representation
created specifically with composers in mind, perform best.

Eppe et al. wish to revisit the subject of modelling raw audio, but with very simple means
using only an autoencoder with GRU networks as encoder and decoder (Eppe et al., 2018).
The modelling is done in the Mel spectrogram domain and the authors use a large MIDI
dataset, convert it into synthesized audio files and then use these as input. The authors here
model single instruments individually, as a proof of concept, but a thought scenario for their
model, once perfected, is to form part of a music ensemble where the input is streams from
the other instruments whereby the model can generate a missing instrument. It is suggested
that their simple model performs well in terms of timing whereas as far as pitch and variation
are concerned, the results are slightly less optimistic. Different models are trained for each
of three instruments and when generated (reconstructed) outputs are concatenated to form
multi-track samples, they sound almost too good to be true. To summarize, with a simple
network, the authors manage to get seemingly better results than what is acquired with far
more advanced architectures in, for example, WaveNet or SampleRNN which is remarkable.
This fact is not specifically addressed and one conclusion is that the use of Mel spectra is
optimal for this task. Another suggestion is that real audio generated synthetically from

86 3 LITERATURE SURVEY

MIDI files is far easier to model than non-synthetic audio, which has been modelled with less
impressive results earlier.

• Variational Autoencoder (VAE):

One of the first attempts to use a VAE in recurrent networks to model music is the Stochastic
Recurrent Networks (STORN) which maintains two parallel RNNs, called recognition and
generating models, with a VAE in between at every time step (Bayer and Osendorfer
(STORN), 2015). The idea is to incorporate temporal context into the latent space of
the VAE, as well as stochasticity in the hidden state of the generating RNN. The former
is accomplished by the recognition model that, at every time step consumes the input and
outputs parameter for the latent space. The generating RNN then takes two inputs as opposed
to the standard one: the same time step input, as did the recognition model, and a sample
from the latent space of the VAE. The output of the generating model is then used to predict
the next time step input. With this setup, both stochasticity in the hidden state of the
generating model, via inclusion of data from the latent space, as well as temporal context in
the latent space, via the recognition RNN, is accomplished. The authors report good results
on benchmark datasets when compared to models in the same class, albeit architectures that
don’t assume independence among variables in the output vector of each time step are still
better.

Another early attempt, VRAE, uses the VAE in an entirely different way in a sequence
to sequence (seq2seq) manner instead (Fabius and van Amersfoort (VRAE), 2015).
Thus, no temporal context is incorporated in the VAE and only the final hidden state of the
encoding RNN is used to parameterize the distribution of the VAE. After sampling from this
distribution, a decoding RNN reconstructs the input with its initial state initialized by the
VAE. The authors use very little training data and argue that the results might be improved
by the use of LSTMs instead of RNNs and give a few other hints on what might be improved.
The strength of this publication is that they show how a VAE might be used in a recurrent
model generally, and for music specifically. The medley published by the authors sound like
chunks from the training data and so questions about the generalization capabilities are left
somewhat unanswered.

By adding an extra regularization term to the VAE loss, one could induce a latent space
with even more structure than usual (Hadjeres et al. (GLSR-VAE), 2017). The model
is called Geodesic Latent Space Regularization VAE (GLSR-VAE) and the idea is that so-
called attribute functions, that measure ordered quantities in the output reconstructions, are
used to control the used latent representations and the authors effectively show that their
method generates a latent space which, in regard to a certain dimension, yields an output
with an increasing quantity as the value of the dimension increases. The quantity could be
for example the number of output notes in a bar. The model uses LSTMs in a sequence to
sequence fashion and only the final state of the LSTM is used to parameterize the latent
space, which is assumed to have a standard Gaussian prior. In the output phase, the sample

3 LITERATURE SURVEY 87

from the latent space is used only to initialize the decoding LSTM. The concept in this article
is very intriguing and interesting which makes it even more regrettable that it lacks some
detail as well as listening samples.

Investigating how generated polyphonic music can stay in key better, the Classifying VAE and
Classifying VAE+LSTM are proposed (Hennig et al. (Classifying VAE, Classifying
VAE+LSTM), 2017). The problem is that even though the latent space of a VAE is
structured, how do we constrain what we sample from it? Starting from a Conditional
VAE (CVAE) (Sohn et al., 2015), where extra annotations are used to condition the
latent space and achieve this constraint, the authors argue that a similar result, but without
manual annotations, is desirable. They then use a feedforward network to model the mean
and variance of key classes to which a certain input belongs. This is done once per sequence
and during training, the Krumhansl-Schmuckler algorithm is used to infer the key of a given
sequence, used for training the feedforward network. After this classification, the main model
takes as input both a piece of data and the sampled key to form the parameters of a latent
vector. After sampling, data is decoded from the latent space sample along with the key as
well as additional data. The main model is both implemented as a VAE and as a VAE+LSTM
(hence the names) and in the first case, data from one time step is reconstructed given the last
time step data, key and a latent space vector whereas in the second case, an LSTM network
(more specifically the STORN network (Bayer and Osendorfer (STORN), 2015) is
used whereby a whole sequence is to be reconstructed at once. Surprisingly, the recurrent and
the feedforward models perform similarly in many aspects. Classifying VAE and Classifying
VAE+LSTM generates music that stay in key better than corresponding models without
conditioning on key, even though the models do not achieve remarkable results on benchmark
datasets. The main achievement lies in the automatic key detection and the incorporation
of this mechanism into the network. Samples sound okay and stay in key without sounding
remarkably well.

A noticeable model from the Magenta community, a subproject of Google Brain focused on
creative applications for machine learning art, that several articles have been based on is
MusicVAE; an architecture with only LSTMs and a VAE (Roberts et al. (MusicVAE),
2017). The authors train on three types of data: 2-bar melodies, 32-bar melodies and 32-bar
trios with lead, bass and drums and their architecture builds on the sequence to sequence
paradigm. Using a bidirectional LSTM as encoder and then a deep LSTM as decoder,
the MusicVAE reconstructs 2-bar melodies with grace. For the remaining experiments, the
architecture is slightly altered and a hierarchical property is added where a first LSTM
decoder outputs 16 pieces of latent code of which each is decoded as 2 bars by a lower hierarchy
(deep) LSTM network. In the case of trios, the lowest hierarchy LSTMs are in reality one
LSTM network per instrument. In each low hierarchy model, the input latent chunk is given
as input to each time step as well as contributing by being the initial state of the LSTM.
The authors also use scheduled sampling, as opposed to teacher forcing, and show that this
increases the model’s dependency on the latent code and improves the result. The samples

88 3 LITERATURE SURVEY

sound impressive and a remarkable interpolation between two 2-bar melodies are showed as an
example of what the MusicVAE can do. For this astounding example, spherical interpolation
between two points in the latent space was used. One of the limitations of the model is that
it cannot generate music in an unlimited way. In a more thorough, follow-up article by an
extended crew, the authors show that spherical interpolation with a hierarchical decoder,
over linear interpolation and spherical interpolation in a flat decoder, result in much more
likely samples, in terms of the model’s own loss function (Roberts et al. (MusicVAE),
2018). Furthermore, teacher forcing is now used instead of scheduled sampling and it seems
like the improvements acquired from using the latter is now expected from the model itself,
as opposed to being dependent on the type of training input enforced. The high-hierarchy
step of the hierarchical decoder is now called the conductor and the authors discuss latent
vectors and so-called attribute vectors, acquired by averaging latent vectors coming from all
samples with a typical property, thoroughly. Finally, a panel of test persons indicate that
when determining which of two samples are more musical, the output of a hierarchical decoder
cannot be distinguished from real music at a significant level whereas with a flat decoder,
both output from a hierarchical decoder and real music are significantly more appreciated.

Z

♪ ♪ ♪ ♪ ♪ ♪ ♪ ♪ ♪
32 32 32

Encoder
(512 steps)

Latent Code
(512 dims)

Decoder 1
(16 steps)

Input
(512 steps)

Decoder 2
(16 x 32 steps)

Output
(512 steps)

Figure 1: Architecture for recurrent hierarchical melody VAE. LSTM cells shown in the same color
share weights and linear layers between levels are omitted.

parameterize a 512-dimension multivariate Gaussian distribution with a diagonal covariance matrix
for z.

We use a recurrent hierarchical decoder to model long melodies. First, the z goes through a linear
layer to initialize the state of a 2-layer LSTM with 1024 units per layer, which outputs 16 embeddings
of size 512 each, one for each pair of bars. Each of these embeddings are passed through a linear
layer to produce 16 initial states for another 2-layer LSTM with 1024 units per layer. This lower-level
LSTM autoregressively produces individual sixteenth note events, passing its output through a linear
layer and softmax to create a distribution over the 130 classes. The categorical distribution is used to
compute a cross-entropy loss during training or samples at inference time. In addition to generating
the initial state at the start of each bar, the embedding for the current bar is concatenated with the
previous output as the input at each time step.

16-bar Trio Architecture

The encoder is the same as for the 32-bar melody architecture, except the one-hot encodings of the
lead, bass, and drum labels are concatenated as the inputs.

We use a similar hierarchical decoder as in the case of the 32-bar melody architecture, except there
are 3 independent bar-level LSTMs as the second level. Each of these LSTMs uses the same sequence
of first-level embeddings to initialize/reset their states at each bar and to concatenate with previous
outputs as the input at each time step.

Dataset

The datasets were built by first scraping the web for publicly-available MIDI files, resulting in ∼ 1.5
million unique files. We removed those that were identified as having a non- 44 time signature and
used the encoded tempo to determine bar boundaries, quantizing to 16 notes per bar (sixteenth notes).

For the 2-bar drum loops, we used a 2-bar sliding window (with a stride of 1 bar) to extract all unique
2-bar drum sequences (channel 10) with at most a single bar of consecutive rests, resulting in 3.8
million examples.

For 2-bar (32-bar) melodies, we used a 2-bar (32-bar) sliding window (with a stride of 1 bar) to
extract all unique non-drum sequences with at most a single bar of consecutive rests, resulting in 28.0

4

Graphic 3.7: Illustration of MusicVAE with a hierarchical decoder taken from the
first publication by Roberts et al..

Using a model called DRAW (Gregor et al., 2015), reminiscent of STORN, Beethoven
sonatas are modelled from a very small training set of 37 MIDIs (Sabathé et al. (DRAW),
2017). The authors devise a 17-dimension vector representation of music pieces that is based
on statistics about the quantity and quality of notes and uses the Malahanobis distance to
determine similarity between two pieces, or between a piece and a set of pieces represented by

3 LITERATURE SURVEY 89

the means of the vectors of its constituent pieces. The DRAW architecture has two parallel
LSTMs with a VAE at every time step in between, where the decoding LSTM iteratively works
on its output for a predetermined number of times. The original DRAW can use attention
for the model to focus on specific parts of the input, however, this feature is omitted by
Sabathé et al. since it did not improve the results. The authors show that, according to their
measure, the output of the trained model generates music that is more similar to music by
Beethoven than to random music or music from another genre. As always with measures of
this kind, one might ask oneself if the captured properties are essential or not. In this case
this is done by, after determining that according to some measure the output music should
be similar to music by Beethoven, listening to the music and verifying this. In this case,
the music is only 13 beats long and sounds okay, but unstructured and does not remind of
Beethoven very much.

Using GRUs in a sequence to sequence network with a VAE modelling melody, the under-
lying chord structure is available as conditioning throughout (Teng et al., 2017). The
architecture is one of the deeper of its kind and 12 layers are stacked both for encoder and
decoder. The authors encode 8-bar segments and go through in detail how they extracted
melody and chord structure from the training set. A relative encoding is employed so that
the authors don’t have to worry about key at all during training. Skip connections are used
to give the network the option to not use all of its layers, if needed, and even though it is
unclear exactly how, the chord structure is given as conditioning at all time steps, both in the
encoder and decoder, at up to two chords per bar. It is the idea of the authors that this will
lead the model to not encode the chordal structure in the latent space since it is available to
the model anyway during decoding. This turns out to be true, which is shown by letting the
trained model decoder start with the same latent sample but provide it with different chordal
structures after which it effectively adapts the generated melody after the new chords. The
authors also show vague implications of structure in terms of genres in the latent space and
suggest that their music shows long-term structure and motives. Unfortunately, evaluation
of all kinds are missing and only some examples are shown. During generation, a grammar is
used to generate a chordal structure and a form which is then used by the model to generate
melody. To generate similar parts, the authors add Gaussian noise to the initially sampled
latent code. Alas, it is unfortunate that so little is described about this grammar. Samples
sound great but monotonous, which is the case with pop music anyway.

Using the VAE in a sequence to sequence setting with some recurrent network model as
encoder and decoder becomes more and more common in the later half of the 2010’s and a
thorough analysis using this architecture for language modelling was done in 2015 (Bowman
et al., 2015). In this article, the authors state that a powerful decoder, such as an LSTM
network, can entirely ignore the latent code and still get good results in terms of the loss
function. However, such an aspect will not show until generation whereby the model will not
be as influenced by the sampled latent code as desirable. The authors show different ways to
handle this, one being weakening the decoder by not supplying already generated tokens or

90 3 LITERATURE SURVEY

by randomly replacing already generated words with an unknown token (the authors call this
word dropout) effectively weakening the decoder. It is also discussed how adding highway
networks (Zilly et al., 2016), essentially making the hidden to hidden transition deeper and
offering optional residual connections in a recurrent network, improves the results on language
problems. Inspiration from these models is drawn in the Variational Autoencoder Supported
by History (VRASH) where monophonic music is modelled (Tikhonov and Yamshchikov
(VRASH), 2017). The authors include MIDI meta data as input to all time steps during
both encoding and decoding and, additionally, add noise to the sampled latent vector before
decoding. They also supply already generated tokens as input to the next generation time
step, hence the alteration justifying the "supported by history" part. The VRASH performs
only marginally better than competitors but manages long-term structure and the produc-
tion of interesting melodies better. The article lacks a lot of information, for example why
noise is added to the sampled latent vector as well as the depth of the highway layers used.
Furthermore, no evaluation of the inclusion of MIDI meta data is declared. Generated mu-
sic sounds monotonous but definitely has some pregnancy to it, especially compared to the
simplest baseline model. Both the VAE and the VRASH models compose nice melodies, but
it remains unclear, what the difference between these models are, except for the noise added
to the sampled latent vector in VRASH.

When modelling music similar to an input, the Convolutional-Recurrent VAE (C-RVAE)
uses the same latent encoding of the input, used for encoding when decoding in a sequence to
sequence network with a VAE modelling the latent space (Koh et al. (C-RVAE), 2018).
The idea is that a CNN first creates a sequence of latent representations for polyphonic input
frames in piano roll notation, typically half a bar each, and supply these, in order, to the
GRU encoder while encoding. The output of the encoder is then used to parameterize the
distribution of a VAE from which is sampled a latent vector that initializes a GRU decoder
which, in turn, is also fed the latent representations used by the decoder (possibly projected
onto a different dimension). At each time step, a generated frame is output and after the
model is trained, one simply samples a latent vector and then supplies a latent representation
of an input, as a conditioning, to which one wants to generate a similar piece of music. The
authors use this idea because their final goal is automatic music generation for video games
where one might want to generate music from an environment similar to another but yet
want new music. It is an ambitious attempt but they fail to make samples available that
show how they have succeeded with their task; samples sound either almost exactly like the
input or not at all and it would have been interesting to get multiple examples of what was
generated from different latent vectors using the same conditioning piece.

Building on the work done with MusicVAE, but instead using a data representation in-
spired from PerformanceRNN, 4-beat measures for multi-track (polyphonic or monophonic
depending on the individual instrument) music with 2-8 instruments are modelled individu-
ally (Simon et al. (MusicVAE), 2018). The on and off messages with additional inputs
to move time forward, now in fractions of a note value as opposed to time as was used in

3 LITERATURE SURVEY 91

PerformanceRNN, are used along with velocity modifying inputs for each of the input in-
struments. Input also contains information about which instrument the track is for, which
also includes drums, and encoding is done with bidirectional LSTMs in two steps: first each
track is processed forming one latent code per track after which a second bidirectional LSTM
processes this sequence to generate the parameters for the latent space of the VAE. After
sampling, a decoder conductor, as it is called in previous papers with MusicVAE, outputs
a number of latent representations which are then forwarded to unidirectional LSTMs that
generate tracks from each of the latent codes. Chord conditioning takes place both in every
step of the encoder as well as the decoder and the authors successfully show that the model
manages to output reasonable music adapting itself to the output chord conditioning when
using the same sampled latent code in multiple attempts. Furthermore, interpolations and
latent space vector arithmetic are shown and even though samples are short, manipulations
are impressive and indicative of what the future has to offer.

• Convolutional Neural Network (CNN):

Convolutional layers can be seen as feature extractors with specific properties and can subse-
quently be used as such on any input, including music, where its contribution may amount to
that of a subcomponent (Kalingeri and Grandhe, 2016; Yu et al. (SeqGAN), 2016;
Bretan et al., 2017; Chen et al. (FusionGAN), 2017; Dong et al. (MuseGAN),
2017; Guimaraes et al. (ORGAN), 2017; Huang et al. (CocoNet), 2017; Yang
et al. (MidiNet), 2017; Koh et al. (C-RVAE), 2018; Mao et al. (DeepJ), 2018).

In a inspiring attempt from 2016, a team from Google Deepmind announced WaveNet which
models speech and music based on the raw wave form of audio modelled as a 16 kHz stream
of 8-bit integers downsampled from 16 bits using PCM encoding (van den Oord et al.
(WaveNet), 2016a). The architecture builds on PixelRNN, and more specifically on Pix-
elCNN (van den Oord et al. (PixelRNN, PixelCNN), 2016b), and uses several mod-
ern techniques along with a 1-dimensional convolution over a large, but bounded, receptive
field of the history to predict the next audio sample. More specifically, the terms causal and
dilated convolutions are used, out of which the former simply refers to a convolution that
only uses input from a history, according to some ordering, to predict the next token (that is,
no peeking ahead). In a speech and music context, what is seen as history is quite straight-
forward, as opposed to in an image, where an ordering must be artificially induced over the
pixels. Furthermore, a dilated convolution is a convolution where the filter inputs are spread
out according to some number. A simple example with a dilation of 2 skips every other input
and thus doubles the receptive window of the filter but halves the resolution of the filter. It
turns out that by stacking dilated convolutions, where the dilation increases exponentially,
the receptive field of a bounded history increases exponentially as well, while the number of
parameters increases only linearly. This is in contrast with non-dilated convolutions where
a stack grows linearly both in receptive field and in the number of parameters. Further-
more, skip connections and residual connections are also used as well as 1 by 1 convolutions

92 3 LITERATURE SURVEY

to reduce channel depth. Finally, gating (where a parameterized portion of some input is
forwarded in line with how an LSTM works) is also employed in each processing layer. By
bounding the history, the network can be parallellized which is not the case when working
with infinite memory RNNs, which in reality are bounded as well since they have a prob-
lem modelling long-term structure. WaveNet produces mostly gibberish, speech-like sound
when run without conditioning, but reach remarkable results when conditioned on voice and
content, which can be done in several ways. When generating piano, the receptive field is
widely enlarged but the output still lacks structure. Nevertheless, it sounds coherently like a
piano and has a feeling of virtuosity but without direction, something like the equivalent of
gibberish speech.

Because models with causal convolutions do not have recurrent connections, they are typically faster
to train than RNNs, especially when applied to very long sequences. One of the problems of causal
convolutions is that they require many layers, or large filters to increase the receptive field. For
example, in Fig. 2 the receptive field is only 5 (= #layers + filter length - 1). In this paper we use
dilated convolutions to increase the receptive field by orders of magnitude, without greatly increasing
computational cost.

A dilated convolution (also called à trous, or convolution with holes) is a convolution where the
filter is applied over an area larger than its length by skipping input values with a certain step. It is
equivalent to a convolution with a larger filter derived from the original filter by dilating it with zeros,
but is significantly more efficient. A dilated convolution effectively allows the network to operate on
a coarser scale than with a normal convolution. This is similar to pooling or strided convolutions, but
here the output has the same size as the input. As a special case, dilated convolution with dilation
1 yields the standard convolution. Fig. 3 depicts dilated causal convolutions for dilations 1, 2, 4,
and 8. Dilated convolutions have previously been used in various contexts, e.g. signal processing
(Holschneider et al., 1989; Dutilleux, 1989), and image segmentation (Chen et al., 2015; Yu &
Koltun, 2016).

Input

Hidden Layer
Dilation = 1

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 4

Output
Dilation = 8

Figure 3: Visualization of a stack of dilated causal convolutional layers.

Stacked dilated convolutions enable networks to have very large receptive fields with just a few lay-
ers, while preserving the input resolution throughout the network as well as computational efficiency.
In this paper, the dilation is doubled for every layer up to a limit and then repeated: e.g.

1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512.

The intuition behind this configuration is two-fold. First, exponentially increasing the dilation factor
results in exponential receptive field growth with depth (Yu & Koltun, 2016). For example each
1, 2, 4, . . . , 512 block has receptive field of size 1024, and can be seen as a more efficient and dis-
criminative (non-linear) counterpart of a 1×1024 convolution. Second, stacking these blocks further
increases the model capacity and the receptive field size.

2.2 SOFTMAX DISTRIBUTIONS

One approach to modeling the conditional distributions p (xt | x1, . . . , xt−1) over the individual
audio samples would be to use a mixture model such as a mixture density network (Bishop, 1994)
or mixture of conditional Gaussian scale mixtures (MCGSM) (Theis & Bethge, 2015). However,
van den Oord et al. (2016a) showed that a softmax distribution tends to work better, even when the
data is implicitly continuous (as is the case for image pixel intensities or audio sample values). One
of the reasons is that a categorical distribution is more flexible and can more easily model arbitrary
distributions because it makes no assumptions about their shape.

Because raw audio is typically stored as a sequence of 16-bit integer values (one per timestep), a
softmax layer would need to output 65,536 probabilities per timestep to model all possible values.
To make this more tractable, we first apply a µ-law companding transformation (ITU-T, 1988) to
the data, and then quantize it to 256 possible values:

f (xt) = sign(xt)
ln (1 + µ |xt|)

ln (1 + µ)
,

3

Graphic 3.8: Dilated causal convolutions used in WaveNet effectively expanding
the historical receptive field exponentially with parameters only growing linearly.
Illustration taken from the WaveNet publication by van den Oord et al..

Inspired by WaveNet and its ability to produce better results with conditioning, a WaveNet-
like autoencoder was introduced later on (Engel et al., 2017). The innovation in this pub-
lication lies in the introduction of a WaveNet-like encoder that offers the original WaveNet
with conditioning, on the fly, without manual intervention. The authors also lay forward a
huge monophonic dataset at 16 kHz with more than 300 000 four-second samples of different
instruments playing held notes; three seconds actively and one second for decay. Appar-
ently, such benchmark dataset does not exist and the authors intend for their dataset, called
NSynth, to fill this hole. Each sample is also tagged by a few characteristics and the publi-
cation is of course devoted to trying their improved model on this dataset in terms of note
reconstruction and instrument and pitch interpolation. These samples are longer than could
be generated with good results without conditioning in the original WaveNet and since no
external conditioning has been supplied, the authors argue that they construct their condi-
tioning automatically which is a leap forward. Interpolations are done by way of interpolating
between points in the latent content used to condition the (decoder) WaveNet. This is re-
markable since this latent space does not seem to be structured, as it would be with a VAE
for example. The authors show that their model is better than a baseline CNN (modelling
FFT spectrograms) and give samples of how they can interpolate between instruments to
create new timbres that sound original, even though, formally when analyzed, they show

3 LITERATURE SURVEY 93

similarities with their ancestors. Optionally, the WaveNet decoder can be conditioned on
pitch as well which does not improve performance, however, structure is upheld during the
generated four-second output. Online fiddling with instrument timbres can be done with this
model at http://g.co/soundmaker.

• Generative Adversarial Network (GAN):

In C-RNN-GAN, the Generator is a unidirectional LSTM whereas the Discriminator is a
bidirectional LSTM (Mogren (C-RNN-GAN), 2016). Each note is represented by four
real values: frequency (pitch height), length (duration), intensity (velocity or dynamics) and
offset to previous note. This implies that notes are modelled sequentially but polyphony can
be modelled by setting offset to 0 for several successive data points. All values are normalized
to be in the range [0, 1] and a baseline LSTM model is used for comparing results. This is one
of the first publications to use this sequential way of modelling polyphony. Samples sound
vaguely like music but very unstructured and random. Measures of evaluation are devised by
the author and during training, short segments are learned first, which the author refers to as
a form of curriculum learning strategy. Results are evaluated according to custom measures
that take different musical qualities into account.

GANs usually work with real values for differentiation purposes and have to work with full
patterns for the Discriminator versus Generator game to work. Thus, they have not been
applicable to sequential problems, nor for problems involving discrete outputs, such as letters
or notes. In SeqGAN, this problem is alleviated by using reinforcement learning and a policy
gradient instead of the loss gradient of the Discriminator. The prefix sequence acts as the state
of the Generator agent and the next token to pick is the action. To solve the partial sequence
problem, the remaining sequence is averaged over multiple Monte Carlo samplings before
being passed to the Discriminator. Different architectures are used for the agents and the
Generator is an LSTM network whereas the Discriminator is a CNN. Residual connections are
used in the latter, which also uses multiple filter sizes and pooling before deciding its verdict.
The Generator and Discriminator are trained alternately and several tasks in different fields
are approached. In the music field, the authors show that the SeqGAN performs better
than the pretrained LSTM Generator on melodies from the Nottingham dataset, modelled
as sequences of discrete numbers corresponding to a piano key ordering.

Another take with GANs is presented in FusionGAN where the final objective is to fusion two
genres in a GAN able to generate melodies similar to both (Chen et al. (FusionGAN),
2017). The idea is that two separate GANs are first trained on each of the genres by itself.
A third GAN is then introducted and training is started anew whereby the new Generator
is trained by both the previous Discriminators as well as its own Discriminator. It attempts
to produce outputs that lie in between the previous Discriminators and at the same time,
the new Discriminator is trained using both the previous Generators as well as real data and
its own Generator. In this process, the initial GANs are trained as well to further improve.
Discriminators are realized using TextCNNs, or 1D convolutions, and the Generators are

http://g.co/soundmaker

94 3 LITERATURE SURVEY

LSTMs. Several baselines are use for comparison and the results of FusionGAN are not
strictly convincing and some of the baseline methods are similar in terms of results. Only a
single unconvincing sample is available and it remains hard to determine exactly how exciting
the outcome of this experiment is, even though the idea is very intriguing.

In MuseGAN, four bars are modelled at a time in a feedforward fashion using CNNs without
any attention paid to recurrent mechanisms (Dong et al. (MuseGAN), 2017). The
publication is thorough and focuses on multi-track polyphonic music, the former being quite
rare and implying the use of many instruments, in this case bass, guitar, drums, piano and
strings. In practice, it amounts to using several input piano matrices, one per instrument,
and deciding how these should interact; the authors present the jamming model, where
each instrument has its own Generator, Discriminator and input noise, the composer, where
a single Generator generates all instruments from the same input noise (and subsequently
share Discriminator) and a hybrid model that uses several Generators that have both shared
and individual input noise and a common Discriminator. The different models have their
instruments generated with different inter- and intra-connections and so the authors expect
them to yield different results. Generated output is evaluated with custom metrics as well
as with a panel whose opinions show a realistic but modest acceptance of the music, which
correlates with both the analysis of the authors and what the samples sound like; there is
structure and instruments are playing in idiomatic ways, but 4-bar patterns are too short to
really reveal anything.

Building on SeqGAN, the originators of Objective-Reinforced GAN (ORGAN) trains the
Generator by means of both the Discriminator and a reward function that takes into account
the ratio of stepwise and fifthwise movements in the generated music (Guimaraes et al.
(ORGAN), 2017). One might discuss whether this is a sign of qualitative music but the
authors show that the resulting music contains a higher degree of these traits when tuned to
do so. The Discriminator and the mentioned reward function are taken into weighted account
by the value of a tuneable parameter that sums to 1; if it is set to 1, then ORGAN degrades
into a SeqGAN whereas if it is set to 0, only the reward function is taken into account,
resulting in a naive reinforcement learning model as opposed to a GAN. The authors keep
this value at 0.5 mostly, taking both factors into account to an equal amount. As in SeqGAN,
the Generator is an LSTM network and the Discriminator is a CNN network and the model
is trained on MIDI melodies of 2.25 bars in size.

Continuing to build on SeqGAN, the domain was later expanded to polyphonic music (Lee
et al. (SeqGAN), 2017). From the article, however, it is obvious that free polyphonic mu-
sic is not targeted but instead melody and chords, more commonly referred to as homophony.
The authors use a word encoding encompassing both melody and chord, represented as a set
of pitches, along with duration, which is variable. The authors argue that the variable length
time steps is an improvement in terms of data representation but several details on this are
lacking. For example, given that each (variable) time step has both a melody note and a

3 LITERATURE SURVEY 95

chord, the problem of rearticulation, which is unaddressed, is still present since one can be
longer than the other. Apart from the new data representation, nothing new is added. Sam-
ples sound acceptable, but not remarkable and without long-term structure as indicated by
the authors.

Inspired by the Deep Convolutional GAN (DCGAN) (Radford et al., 2015), the originators
of MidiNet uses deep CNNs for both the Generator and the Discriminator in a GAN network
that models melody in a feedforward style, bar by bar with an optional chord conditioning
(Yang et al. (MidiNet), 2017). Conditioning is available in two main forms: as a 1D
vector representing the chord of the current bar or in 2D shape representing the content of
one or several preceding bars. When using a 2D shape, an extra component is added called a
conditioning CNN which is also a deep CNN that produces intermediate outputs suitable to
the inputs of the Generator CNN for the conditioning to blend in optimally. Three models
are constructed where the first only uses previous bar(s) conditioning, the second uses chord
conditioning with previous bar(s) conditioning only in the last layer and finally a model
which uses full both chord and previous bar(s) conditioning to generate a bar of melody. A
panel indicates that the output of MidiNet is at the same level or better than contemporary
models from the Google Magenta project. The panel scores music based on how pleasing it
is, how real it sounds and how interesting it is. The last category is the one where MidiNet
apparently excels the most. The samples sound ok but do not stick out as state of the art.

• Other:

DeepBach is a dependency network, which can be thought of as a Bayesian network with
cycles, that learns using Gibbs sampling (Hadjeres and Pachet (DeepBach), 2017).
The authors specialize on Bach chorales with strictly four voices and focus on harmonizations
and reharmonizations of these. Each voice is modelled with a separate submodel and apart
from the pitches of each voice, fermatas (the equivalence of the point or end-of-sentence
in language), different subbeats of the quarter note and the time signature are taken into
account. Given a time step and a voice for which we want to predict the value, each voice is
modelled with one LSTM network processing a window before the current time step as well
as an LSTM network working in the opposite direction from the end of the same size future
window. At the current time step, a feedforward network processes the data except for the
note to predict. The output of this network along with the final output of all the different
voice LSTMs are then concatenated and fed into a final feedforward network that outputs
a prediction. The network is trained with Gibbs sampling which is time consuming. After
training, the user can determine what to hold fixed and what to resample and voices can be
held fixed to only reharmonize some parts and fermatas can be introduced to induce a musical
ending. DeepBach is thus a tool meant for interactive use and specifically for harmonization
or reharmonization. Despite this, the authors use DeepBach to generate music from scratch,
a process which is slightly unclear given the previous details, but it turns out that is it not

96 3 LITERATURE SURVEY

entirely easy for a panel to determine whether generated music is real Bach or DeepBach.
Results sound impressive and much like Bach.

3.2.4.8 Frameworks

Most early publications lack information on the details of how models were implemented. In one ex-
ception to this, it is written that the language C was used for implementation (Freisleben, 1992).
Gang also mentions that PlaNet was used for several of his networks (Gang and Lehmann, 1995,
Goldman et al. (NetNeg), 1999). Matlab and its Neural Net framework has also been used
(Franklin and Locke, 2005). In the middle era, standardization in general becomes more preva-
lent, including standardization of preprocessing libraries as well as datasets and neural network
frameworks. The latter however, seems to be evolving slower than the other two and different,
more or less obscure, libraries are used. An example of this is Aspirine & Migraines written in C
and C++ (Adiloglu and Alpaslan (NeuroComposer), 2007). Java has also been used for
implementations (Bickerman et al. (RBM-provisor), 2010).

In the recent era, frameworks for neural networks are more standardized and a very early example
that lists both what programming language was used as well as what libraries is the publication
on DeepAutoController (Sarroff and Casey (DeepAutoController), 2014). The trend of
including these details then become more and more prevalent over the years and numerous frame-
works appear. Some frameworks are high-level and acts as a front-end to a lower level framework
whereas others are self-contained.

Also in the recent era, it becomes more common to use existing frameworks for input data prepro-
cessing. Most preprocessing frameworks processes MIDI but exceptions to this exist.

Detailed lists over publications and frameworks and preprocessing frameworks can be found in
Appendix A and Appendix B.

3.2.4.9 Datasets

For most early publications as well as models that make it necessary for the training data to fulfill
some very particular role, custom datasets, not always clearly accounted for, are used. Later on
however, some datasets surface and start to get standardized and hence get used more often.

The Nottingham database is the first dataset used in a publication that later becomes a standard
dataset for music modelling tasks (Eck and LaPalme, 2006). The same publication also uses
data from The Session which, even though not a standard source of music, appears frequently.
When entering the recent era, the four most used datasets in the history of music modelling
with neural networks are laid forward (Boulanger-Lewandowski et al. (RNN-RBM, RNN-
NADE), 2012). The reason to this is many-fold: first of all, no datasets were standardized before
then and so there was a need for this, especially given that music modelling started to gain more
and more attention in the community. Furthermore, many datasets required a lot of preprocessing

3 LITERATURE SURVEY 97

to end up in a suitable format and since Boulanger-Lewandowski et al. made their preprocessed
versions available to the public, it was easy for people to adopt this standard. Finally, their article
is impressive and sets forth new baselines with results for a plethora of simpler models and so,
working in the same field, it was a glorious venture to set out to improve on their work which
essentially made it necessary to use their datasets. Thus, the combination of circumstances and
content of their article resulted in a powerful impact and a threshold to the future being passed.

The datasets presented by Boulanger-Lewandowski et al. are MuseData, Piano-midi.de, Notting-
ham (which had been used before) and JSB chorales and they are, as said, available as both
preprocessed MIDI and piano roll versions, partitioned into training, validation and test sets, as
well (Boulanger-Lewandowski et al. (RNN-RBM, RNN-NADE), 2012). A lot of publi-
cations use the datasets in this preprocessed piano roll form whereas others use the original datasets
to preprocess the MIDI themselves. Walder later tries to replicate the milestone by Boulanger-
Lewandowski et al. by suggesting a new data representation, achieving (close to) state-of-the-art
results on the previous benchmark datasets and making the same available in a preprocessed format
more suitable to his data representation (Walder, 2016). It seems, however, that the penetrating
power of this attempt, despite good results, was not at the same level as that of the accomplishment
by Boulanger-Lewandowski et al..

Also purely signal-based datasets are available with audio signals instead of a data representation.

Some preprocessing frameworks for MIDI or some other representation have datasets included in
a ready-to-use fashion.

A detailed list over publications and used datasets can be found in Appendix C.

3.2.4.10 Evaluation

No standardized way to evaluate generative networks modelling music exists and contributors have
focused to a highly varying degree on this issue; some go through great elaboration to try to devise
measures of success on their own (Coca et al., 2011; Liu and Ramakrishnan, 2014; Mogren
(C-RNN-GAN), 2016; Colombo et al. (DAC), 2017; Dong et al. (MuseGAN), 2017;
Guimaraes et al. (ORGAN), 2017; Sabathé et al. (DRAW), 2017) whereas others simply
use what others have used. In a lot of cases, measuring test set loss of known datasets (or simi-
lar measures) and comparing to other models is used (Franklin, 2004; Franklin and Locke,
2005; Franklin, 2006; Franklin, 2005; Boulanger-Lewandowski et al. (RNN-RBM,
RNN-NADE), 2012; Goel et al. (RNN-DBN), 2014; Liu and Ramakrishnan, 2014;
Gan et al. (TSBN), 2015; Lyu et al. (LSTM-RTRBM), 2015; Vohra et al. (LSTM-
DBN), 2015; Madjiheurem et al. (Chord2Vec), 2016; Sturm et al. (char-rnn, folk-
rnn), 2016; Walder, 2016; Yu et al. (SeqGAN), 2016; Agarwala et al., 2017; Bretan
et al., 2017; Johnson (LSTM-NADE, TP-LSTM-NADE, BALSTM), 2017; Mehri
et al. (SampleRNN), 2017; De Prisco et al., 2017; Engel et al., 2017; Hadjeres

98 3 LITERATURE SURVEY

and Nielsen (Anticipation-RNN), 2017; Hennig et al. (Classifying VAE, Classify-
ing VAE+LSTM), 2017; Huang et al. (CocoNet), 2017; Roberts et al. (MusicVAE),
2017; Roberts et al. (MusicVAE), 2018; Tikhonov and Yamshchikov (VRASH), 2017;
Wu et al. (HRNN), 2017; Ycart and Benetos, 2017; Colombo and Gerstner (Bach-
Prop), 2018; Walder and Kim (MotifNet), 2018), especially so in publications treating
music as a benchmark problem (Bengio et al., 2012, Bayer et al., 2013,Pascanu et al.
(DT(S)-RNN, DOT(S)-RNN, sRNN), 2013; Chung et al., 2014; Bayer and Osendor-
fer (STORN), 2015). Formulating some baseline models oneself and then proving the capacity of
one’s contribution is a yet more efficient way to evaluate since it guarantees a uniform data process-
ing and eliminates sources of errors due to this (Franklin and Locke, 2005; Eck and LaPalme,
2006; Boulanger-Lewandowski et al. (RNN-RBM, RNN-NADE), 2012; Chung et al.,
2014; Sarroff and Casey (DeepAutoController), 2014; Sigtia et al., 2014; Nayebi
and Vitelli (GRUV), 2015; Bretan et al., 2016; Chu et al., 2016; Huang and Wu,
2016; Jaques et al. (RL Tuner), 2016; Kalingeri and Grandhe, 2016; Lattner et al.
(C-RBM), 2016; Madjiheurem et al. (Chord2Vec), 2016; Mogren (C-RNN-GAN),
2016; O’Brien and Román (MusicNet), 2016; Sun et al., 2016; Walder, 2016; Yu
et al. (SeqGAN), 2016; Agarwala et al., 2017; Chen et al. (FusionGAN), 2017;
Johnson (LSTM-NADE, TP-LSTM-NADE, BALSTM), 2017; Mehri et al. (Sam-
pleRNN), 2017; Engel et al., 2017; Guimaraes et al. (ORGAN), 2017; Hadjeres
and Nielsen (Anticipation-RNN), 2017; Hennig et al. (Classifying VAE, Classifying
VAE+LSTM), 2017; Huang et al. (CocoNet), 2017; Jaques et al. (Sequence Tutor),
2017; Roberts et al. (MusicVAE), 2017; Roberts et al. (MusicVAE), 2018; Shin
et al., 2017; Tikhonov and Yamshchikov (VRASH), 2017; Wu et al. (HRNN), 2017).
Another popular approach, orthogonal to the previous ones, is to use the verdict of a panel of
listeners (Hild et al. (HARMONET), 1991; Gang and Lehmann, 1995; Hörnel and
Menzel (MELONET), 1998; Eck and Schmidhuber, 2002; Melo and Wiggins, 2003;
Bretan et al., 2016; Chu et al., 2016; Huang et al. (ChordRipple), 2016; Huang and
Wu, 2016; Kalingeri and Grandhe, 2016; Sturm et al. (char-rnn, folk-rnn), 2016;
Yu et al. (SeqGAN), 2016; Agarwala et al., 2017; Chen et al. (FusionGAN), 2017;
Mehri et al. (SampleRNN), 2017; De Prisco et al., 2017; Dong et al. (MuseGAN),
2017; Hadjeres and Pachet (DeepBach), 2017; Huang et al. (CocoNet), 2017; Jaques
et al. (Sequence Tutor), 2017; Liang et al. (BachBot), 2017; Malik and Ek (StyleNet),
2017; Roberts et al. (MusicVAE), 2018; Shin et al., 2017; Wu et al. (HRNN), 2017;
Yang et al. (MidiNet), 2017; Colombo and Gerstner (BachProp), 2018; Mao et al.
(DeepJ), 2018) and perhaps perform some kind of blind test whose outcome is a measure of
success. During the recent era, a test informally referred to as a musical Turing test is sometimes
used, whereby participators are given two samples of music and are asked to point out the one
written by a human being (Malik and Ek (StyleNet), 2017; Shin et al., 2017; Wu et al.
(HRNN), 2017). Applying statistical methods or frameworks to validate whether the output,

3 LITERATURE SURVEY 99

according to some measure, is not random is also common (Melo and Wiggins, 2003; Sig-
tia et al., 2014; Bretan et al., 2016; Huang et al. (ChordRipple), 2016; Huang and
Wu, 2016; Jaques et al. (RL Tuner), 2016; Lattner et al. (C-RBM), 2016; Mogren
(C-RNN-GAN), 2016; Sun et al., 2016; Yu et al. (SeqGAN), 2016; Bretan et al.,
2017; Chen et al. (FusionGAN), 2017; Hadjeres et al. (GLSR-VAE), 2017; Hadjeres
and Nielsen (Anticipation-RNN), 2017; Hennig et al. (Classifying VAE, Classifying
VAE+LSTM), 2017; Jaques et al. (Sequence Tutor), 2017; Lee et al. (SeqGAN),
2017; Liang et al. (BachBot), 2017; Roberts et al. (MusicVAE), 2018; Sabathé et al.
(DRAW), 2017; Shin et al., 2017; Ycart and Benetos, 2017; Eppe et al., 2018). In
some straightforward tasks, measuring the accuracy of the trained model against a somewhat ex-
haustive test set is enough (Laden and Keefe, 1989; Mozer (CONCERT), 1990; Mozer
and Soukup (CONCERT), 1991; Mozer (CONCERT), 1994; Eck and Schmidhuber,
2002).

In some cases, the expectations on the model is very clear and conforms to some well-defined
standard and in those cases, it is easier to evaluate in a meaningful way. An example of this
is systems that should be able to alternate with a jazz soloist in playing solos (Nishijima and
Watanabe (Neuro-Musician), 1993; Franklin (CHIME), 2001; De Prisco et al., 2017)
which have been evaluated by letting them perform this very task with live players approving, at
least in part, of the result. Other examples are NetNeg outputting first species counterpoint which
is a very strict and clear way of writing music (Goldman et al. (NetNeg), 1999), or models
outputting jazz chord progressions (Choi et al. (char-RNN, word-RNN), 2016) which can
easily be determined to be in style or not. In WaveNet where speech is formed, it is easy to
determine if it makes sense or not and the same goes, to a limited extent, for the piano music
produced by the same (van den Oord et al. (WaveNet), 2016a). Having real musicians play
music from a model also, to some extent, indicate that the output is of quality (Sturm et al.
(folk-rnn, char-rnn), 2016; Hadjeres and Pachet (DeepBach), 2017; Colombo and
Gerstner (BachProp), 2018). For models learning latent representations of the material, the
reconstruction loss is a very simple way to evaluate the success (Large et al., 1995) and in
transcription contexts, it is very easy to determine whether a music model performs correctly and
improves transcriptions or not (Sigtia et al., 2014).

In Appendix D is presented an overview of the most comparable results achieved by different pub-
lications, namely those achieved on the standard datasets, as set forth by Boulanger-Lewandowski
et al. (Boulanger-Lewandowski et al. (RNN-RBM, RNN-NADE), 2012). This publi-
cation uses a piano roll data representation that they have made available to the public for easy
comparative results. They also specify their loss as the average loss of a single time step. Over
time, however, other publications aspiring to set new results on these datasets do not always use
these preprocessed versions and this results, of course, in uncertainties regarding the comparability
between different results.

100 3 LITERATURE SURVEY

3.2.4.11 Source Code

Making the course code available to the public, in the spirit of truly scientific methods, is a trend
that has increased monotonously over the years. One reason for this is the standardization of
frameworks and tools which make it easier for anyone to replicate an experiment. Nevertheless,
even as of today, far from all source code is available for the general public.

One of the first to release source code that is still available today is Bickerman et al. (Bickerman
et al. (RBM-provisor), 2010).

A detailed list of publications and links to their source code can be found in Appendix E.

3.2.4.12 Samples

One might find it self-evident that publications about systems that should be able to compose
music in some way provides samples of this as part of a results section. Unfortunately, and to
much disappointment, this is not always the case, even though this tendency has improved over
there years.

Many early publications show sheet music as part of the publications (Todd, 1989; Mozer
(CONCERT), 1990; Hild et al. (HARMONET), 1991; Lewis (CBR), 1991; Mozer
and Soukup (CONCERT), 1991; Freisleben, 1992; Tsang and Bellgard (EBM), 1992;
Bellgard and Tsang (EBM), 1994; Mozer (CONCERT), 1994; Gang and Lehmann,
1995; Gang and Berger, 1996; Large et al., 1995; Goldman et al. (NetNeg), 1999;
Berger and Gang, 1997; Gang et al. (HNN), 1997; Gang et al. (HNN), 1999; Hörnel
and Menzel (MELONET), 1998; Chen and Miikkulainen, 2001; Franklin (CHIME),
2001). This holds true for the middle period as well (Eck and Schmidhuber, 2002; Verbeurgt
et al., 2004; Franklin, 2006; Franklin, 2005; Adiloglu and Alpaslan (NeuroComposer),
2007; Corrêa et al., 2008; Bickerman et al. (RBM-provisor), 2010; Coca et al., 2011)
even though it now gradually becomes more common to supply online links to listening samples as
well. In the recent period, written music is often presented in the publications (Liu and Ramakr-
ishnan, 2014; Sun (DeepHear), 2015; Bretan et al., 2016; Choi et al. (char-RNN,
word-RNN), 2016; Chu et al., 2016; Colombo et al., 2016; Huang et al. (ChordRip-
ple), 2016; Sturm et al. (char-rnn, folk-rnn), 2016; Walder, 2016; Colombo et al.
(DAC), 2017; Johnson (LSTM-NADE, TP-LSTM-NADE, BALSTM), 2017; Dong
et al. (MuseGAN), 2017; Hadjeres et al. (GLSR-VAE), 2017; Hadjeres and Pachet
(DeepBach), 2017; Hadjeres and Nielsen (Anticipation-RNN), 2017; Teng et al.,
2017; Wu et al. (HRNN), 2017; Yang et al. (MidiNet), 2017; Koh et al. (C-RVAE),
2018; Mao et al. (DeepJ), 2018) even though it is desirable that this is complemented with
links to online listening samples. At this time, it also gets more and more common to publish
reconstruction samples in piano roll representation that are comparable to used training samples
(Sigtia et al., 2014; Gan et al. (TSBN), 2015; Lyu et al. (LSTM-RTRBM), 2015;

3 LITERATURE SURVEY 101

Lattner et al. (C-RBM), 2016; Malik and Ek (StyleNet), 2017; Roberts et al. (Mu-
sicVAE), 2017; Roberts et al. (MusicVAE), 2018; Ycart and Benetos, 2017; Simon
et al. (MusicVAE), 2018).

The analogy of showing samples of written music in the context of modelling the actual audio
signal is showing spectograms (Sarroff and Casey (DeepAutoController), 2014; Nayebi
and Vitelli (GRUV), 2015; Engel et al., 2017; Eppe et al., 2018).

Some early exemplary publications with Internet links are unfortunately expired and the links are
either dead (Hörnel and Menzel (MELONET), 1998; Eck and LaPalme, 2006) or miss
the referred content (Chen and Miikkulainen, 2001).

Publications in the recent era should, to be convincing, publish both written samples as well
as listening samples online, as a complement to more formal evaluation. In these modern days,
there is really no excuse for not making such data available, especially since there are examples
of publications that show good formal evaluation accompishments but whose samples sound really
bad, thus, there is not a one-to-one mapping between good scores on evaluation metrics and
the ability to generate somewhat convincing music, thus urging the need for both. Examples of
publications that aim at showing great state-of-the-art results, or simply insinuate that their models
perform well, but lose in credibility due to the lack of samples are (Goel et al. (RNN-DBN),
2014; Vohra et al. (LSTM-DBN), 2015; Colombo et al., 2016; Huang and Wu, 2016;
O’Brien and Román (MusicNet), 2016; Walder, 2016; Hadjeres et al. (GLSR-VAE),
2017; Hadjeres and Nielsen (Anticipation-RNN), 2017; Walder and Kim (MotifNet),
2018). Some publish samples that are decorated by using very elaborate synth sounds with effects
and adding drum tracks in which case it is easy to get mislead from the actual output of the model
and instead get impressed by the added surface.

A detailed list of publications and links to samples are available in Appendix F.

3.3 Summary
Depending on how we restrict the notion of algorithmic composition, it has been around for a
very long time and ever since the dawn of computers, a certain interest has also existed around
how to involve these machines in the task. In general, the history of algorithmic composition is
diverse and many different directions have been, and are still, taken, both mathematical, random
and grammatical only to mention a few. Some of the most successful results seem to have been
acquired with hybrid systems.

Neural networks have been used to model music since the 80’s and at least two paradigm shifts
and a certain evolution covering most, but not all, aspects can be followed. To a high degree,
the evolution follows that of general neural networks with deep learning on the rise in the last
decade. Another, less expected, tendency is that the level of musical knowledge among authors

102 3 LITERATURE SURVEY

seems to have dropped over the years. Maybe this is expected in one way since it indicates that
algorithmic composition with neural networks have been sucked up into the corpus of common
neural network fields which diverse authors try their models in without necessarily being musicians
or knowledgeable in music. Different schools of thought emerge in several ways and one example is
the strong preference for simple layouts that should work with minimal guidance counterbalanced
with complex frameworks with lots of subcomponents that requires human interaction. Another
tendency is that some authors regularly publish new articles with updates and improvements of
previous models whereas others try out new directions every time.

Given that this is a literature survey on algorithmic composition with neural networks, it is not
unexpected that most of the studied publications are on networks that compose. Some networks
do related tasks such as harmonization and the farthest away from this core task we get is when
networks are used as a prior for automatic music transcription (AMT). It is evident that music
models can also serve a purpose in the field of music information retrieval (MIR) even though it is
out of the scope of this thesis. The structure of the music modelled has always been diverse and
continues to be so. A development is that it is more common to model polyphonic music more
recently but even so, monophonic and homophonic music are still modelled today.

As far as data processing is concerned, authors started off making hand-crafted features highly
differing between publications but it has over the years become more and more common to use
MIDI as an input representation. The reasons for this are many-fold and one reason is that the
direction taken towards deep learning and deeper models makes the availability of large volumes
of training data necessary. MIDI can be recorded from performances as well as be generated from
synthesizers and software and even though the mass of MIDI files on the Internet is diverse, both
in terms of genre, quality and specific encoding, it is probably the largest free source of (somewhat)
symbolic music possible to convert to a reasonable data representation available. The MIDI format
is also very rich, putting few restrictions and assumptions on musical properties and thus suitable
for different kinds of modelling. This richness has the downside that it allows for properties, such
as expressive timing, which might make conversion to an internal data representation somewhat
cumbersome and ambiguous. Some publications pay extra attention to this and there are software
libraries that automate the task. Nonetheless, this conversion may be a source of uncertainty when
it comes to comparing results and up to this date, no standard exists.

When it comes to internal representations, an intuitively appealing, and throughout time the most
common, way to represent music is by means of a matrix with time along one dimension and pitch
along another; along the time axis, time slices corresponding to a chosen fraction of time or note
values float whereas in the pitch axis, an ordered chromatic scale unfolds. There are at least two
problems with this representation. The first problem is that one cannot distinguish a held note
from a repeated one and the second one is that outputting a polyphonic prediction for an entire
time slice at a time unavoidably results in the output notes being conditionally independent, which
is not very realistic. The first problem can be solved by adding extra inputs that account for
rearticulation and the second problem is handled by allowing the output function to be handled

3 LITERATURE SURVEY 103

by a mechanism that do not make assumptions on conditional independence, for example a NADE
or an RBM. Another problem with time slicing, however, is also that the finer the granularity,
the more the model is rewarded for repeating the same pitch over and over again, which probably
has negative impact on the generative capabilities, albeit not on the automatic evaluation metrics.
Even though less intuitive and easy to overview, other representations have had more success, for
example modelling one note at a time in a sequential manner, which works both for polyphonic
and monophonic music, and makes the MIDI representation even more similar to the internal
representation used.

The sequential aspect of music has mostly, adequately, resulted in the employment of RNNs to
model music, no matter if a number of time steps are used to predict the next or if each time
step is predicted in a continuous manner, with a time step constituting everything from a single
event to a bar of music. Even later on, now instead using GRUs or LSTMs, different sorts of
RNNs have continued to be the most common basis for networks modelling music. In conjunction
with this, RNNs might stick out as opposites to feedforward networks but both have actually been
used and it is not hard to see why; RNNs have an unlimited temporal scope which is in reality
limited and feedforward networks may be equipped with extra inputs accounting for a number
of contextual units making them somewhat temporal. One direction of development has been
to use other architectures for output (for example an RBM or NADE) whereas another one has
been to use RNNs in sequence to sequence models instead, inspired from language modelling. It
is noticeable how undirected models (RBMs and DBNs) continue to provide solid results despite
their age and less transparent underlying theory. Embedding layers also improve most results
as a rule. Early on, the networks were often guided in terms of additional inputs as well as
through different architectural choices in the model. The originators of articles were then, as
mentioned, often musicians, or musically interested, themselves and thus had better possibilities
to thoroughly analyze how to present the different aspects of music to a network. The tendency
has ever since been the same as in other areas of neural network learning: larger networks, new
network architectures, more training data and less, or even no, guidance. Typically, it is desirable
in many paradigms that a model should be able to be trained end-to-end with only the data.
Nevertheless, there are still authors who believe that music modelling with neural networks should
be done in tandem with a user guiding the process somehow. Depending on what expectations
that is reasonable to have on these algorithms, both standpoints can be defended. Apart from
previously mentioned models, entirely different strategies have also been used with feedforward and
convolutional networks. Given a more abstract view on the layout of architectures, the notion of
different hierarchies has become more and more common recently with the goal that a model should
be able to discover and account for structures at different hierarchical levels. With hierarchical
models comes also the importance of determining the direction of conditioning, given that some
level of hierarchies can be made dependent on others. Along a third line of thought, networks
that are partitioned into subnetworks might be used where some subnetworks might not even be
neural networks. Thus, the general evolution of architectures advocate to add potential to the task

104 3 LITERATURE SURVEY

either using more expressive and advanced state-of-the-art neural network devices or to connect
traditional architectures together, either as a single large network or multiple smaller.

The level of transparency has also increased over the years and it is nowadays common, in the
true spirit of science, to make available both code and listening samples of the accomplished
architectures. However, an area where no unified standard has emerged is in that of evaluation.
Here, we see a trend where general data scientists tend to use validation set losses on benchmark
datasets to measure the level of success whereas data scientists with a more musical background
tend to focus more on panels of listeners from different backgrounds that get to express their
thoughts on generated music. Both obvious and less obvious problems exist with both of these
methods and in the case of benchmark datasets, it is hard to know whether comparisons of results
between publications are fair or not. Authors referring to results on benchmark datasets also often
pay little to no attention to what the generated music actually sounds like and in the few cases where
samples are actually available (because in this category, they tend not to be), the results do not
correlate with musical quality. Different evaluation hybrids exist as well where customs statistical
metrics are used to measure the quality of the output, often with the result that the chosen musical
parameters seem arbitrary and not necessarily indicative of quality. One remarkable observation is
that overfitting is a tendency discussed to virtually no extent when compared to other fields where
neural networks are used. It has lately been suggested that machine learning algorithms in general
should be evaluated and improved with respect to performance in the original problem domain and
with input from practitioners in that domain (Sturm et al., 2018). The authors put together
a concert program with music, sometimes manually completed after generation, by trained models
played by live musicians with an ensuing evaluation. In this context, it is proposed that machine
learning in some areas become a problem in a closed world with training sets and where the end
goal is to produce results in the machine learning community, missing the connection back to the
original problem domain. The authors further discuss the role of machine learning in music and
whether it is reasonable to aim for a standalone product or more of an aiding tool for composers and
contrast large monolithic programs with several smaller working together iteratively. Everything
else aside, one must not forget that music is an art and some of the problems of evaluation and
keeping a steady course for the future lie in this fact.

The most prevalent unsolved problems when it comes to music modelling with neural networks
are the problems of evaluation and long-term structure. A lot of suggested solutions have been
offered for both but in the case of evaluation, none has become standardized. As far as long-term
structure is concerned, different architectures and processing methods have been used, sometimes
with promising results but not to the extent that the problem has really been solved. Given the fact
that many authors state that repetition is also a significant property of music (Freisleben, 1992;
Eck and LaPalme, 2006), it is not hard to understand that long-term structured repetition is
crucial for a neural network to model music with satisfactory results.

4 METHOD
In this section, design choices are first made and motivated after which is presented the architecture
that was implemented and used for the remaining parts of this work.

4.1 Design Choices
First of all, a few thoughts on some very common tendencies encountered in other work. For
example, it is often implicitly conveyed that the more intuitively appealing to the human brain
a modelling pattern is, the better, even though this might not at all be the case. Even though
inspired by the human nervous system, and therefore the brain, neural networks don’t function
in the same way as the human brain and when presented with indications that a non-intuitive
representation is better, these must be taken seriously. Similarly, often some aspect of the human
compositional process is attempted to be ported to a machine learning model whereas in reality,
there is really no indication of this being a winning strategy; maybe we have to take into account
that neural networks compose in a different way than we do? Finally, the similarities with text
and music is often emphasized which can be questioned. After all, in music a single motive can
be the basis for an entire piece and so music shows much more self-similarity than does a general
text, possibly with the exception of some particular types of text, for example poetry or lyrics.

Based on the work accounted for in section 3, several design choices are to be made with respect
to architecture. As a starting point for this, ten models from the literature survey are picked out
as the state of the art. These models are then further refined in number and then used to guide a
series of choices.

4.1.1 State of the Art
The following models from section 3 are considered the state of the art because they stand out
thanks to interesting design choices and / or well-sounding results:

• C-RBM (Lattner et al., 2016):

Being one of the relatively few examples where a convolutional network is used to model
music, the C-RBM builds on the attractive idea of iterative improvement and is the only one
of its kind. It builds on rather complex theoretical grounds using an old-school RBM but its
generated music sounds interesting.

105

106 4 METHOD

• PerformanceRNN (Simon and Oore, 2017):

Now being a part of the Google Magenta project, the PerformanceRNN takes a step away
from the discretized data representation and provides impressive sounding results despite the
more unintuitive, yet MIDI-like, representation with on and off events for single pitches and
separate inputs that move time ahead.

• BALSTM (Johnson, 2017; De Prisco et al., 2017; Mao et al. (DeepJ), 2018):

Giving a good solution for how to preserve the musical property of transpositional invariance
and refrain from augmenting the training data with transpositions in all keys, the BAL-
STM produces music that sounds nice with convincing architectural arguments. The original
author effectively shows that the transpositional invariance property is present (Johnson,
2017) and the architecture also lends itself to use along with additional properties and
conditioning (Mao et al. (DeepJ), 2018).

• DeepBach (Hadjeres and Pachet, 2017):

With a complex machinery of several diverse subcomponents, mixing unsupervised and su-
pervised learning, DeepBach provides outputs in a limited musical context and genre that
sounds very impressive.

• BachBot (Liang et al., 2017):

Employing the somewhat same limited musical context as DeepBach, BachBot uses time
slicing but with the innovative novelty of modelling the polyphony in a time-sliced step
sequentially. The architecture is much simpler than DeepBach and uses less spread ideas in
terms of machine learning but its results sound equally well.

• CocoNet (Huang et al., 2017):

Also excelling in the narrow field of Bach chorales, CocoNet provides great sounding poly-
phonic results from a rather simple convolutional architecture built on rather more compli-
cated theoretical grounds.

• JamBot (Brunner et al., 2017):

With a simple architecture used in an innovative way, JamBot produces virtually unrestrained
polyphonic music that sounds good while using one LSTM for chord conditioning in an
interesting way.

• MusicVAE (Roberts et al., 2017; Roberts et al., 2018; Simon et al., 2018):

Noticeable because it forms an important part of the Google Magenta project, the MusicVAE
also provides results that are both intriguing and inspiring to listen to. Being one of the state-
of-the-art architectures, it has been used in several papers and provides good results both
when being used with a time slicing data representation (Roberts et al., 2017; Roberts
et al., 2018) as well as a non-discretized one (Simon et al., 2018). The musical property
of structural hierarchies are also manifested in the very design of this model.

4 METHOD 107

• BachProp (Colombo and Gerstner, 2018):

Bringing attention to the importance of training data and data representation, the originators
of BachProp demonstrates a simple and efficient preprocessing pipeline for MIDI while also
modelling several parameters in a non-discretized and novel manner with internal conditioning
among the properties in every time step in an impressive way. The demonstration on data
representation also accentuates the question of what impact improper data preprocessing has
had historically on models trained on MIDI.

• MotifNet (Walder and Kim, 2018):

Another complex architecture with many subcomponents but with very convincing theoretical
ideas that build on musical properties. It sticks out from the mass but lacks both technical
detail and listening samples.

4.1.2 Paragons
The state of the art is now further reduced in number to arrive at a few paragons, or role models,
whose design choices are worthy to look into and carry over to the new architecture that is to be
implemented.

As simplicity is a general virtue and a guide line in the hunt for paragons, DeepBach, C-RBM and
MotifNet are early discarded as such. The MotifNet paper also lacks technical detail to the degree
where drawing anything but highly abstract inspiration from it would be infeasible. Furthermore,
the success of convolutional networks in algorithmic composition with neural networks has been
somewhat limited and it hasn’t been a track that a large portion of authors have chosen to head
down. For this reason, C-RBM and CocoNet are discarded as paragons since using them would
imply too much of restriction in other design choices, e.g. experiences from the vast majority
of RNN models would go lost. Models resting on older theoretical grounds are also less suitable
as modern paragons which are also reasons for discarding C-RBM and DeepBach. JamBot is
furthermore discarded because it builds on the notion of chords as an integral component, which is
a liability since all kinds of music do not have specific chords that can represent the pitch content
of a bar. It also violates condition C.6 of the problem statement since it makes assumptions on the
input music and finally, it would require extra annotations (or preprocessing steps) wherever chord
information is not readily available. This results in the five paragons PerformanceRNN, BALSTM,
BachBot, MusicVAE and BachProp.

108 4 METHOD

4.1.3 Large-scale Design - Architecture
All of the conditions in subsection 1.2 can be met with at least one of the five paragons and they
shall now be used as inspiration for the network architecture to implement. Some of the conditions
from 1.2 are now reiterated with the paragons in mind to get closer to an architectural choice. The
remaining conditions are more closely related to how to build and use the model and oppose to
what will constitute the model and we shall see that they are respected as well.

C.3 Steerable by means of seeding or conditioning to some degree, in the way that it outputs
different compositions as a result of different seeds and / or conditioning.

Even though conditioning can be applied to any model, such as is done in DeepJ with addi-
tional inputs representing some conditioning class distribution, it hardly beats the opportu-
nities for steering and interpolation that the structured latent space of a VAE offers, as it is
a concept built into its very core. Among the paragons, only the MusicVAE contains a VAE
and even though this design, in its original form, does not meet all the conditions in 1.2, it is
a good base architecture, both thanks to this subcomponent but also due to its results. The
MusicVAE is also conceptually simple and builds on newer machine learning advances, which
are both desirable properties. The original MusicVAE summarizes an input unit (for example
one or two bars) of music in time-sliced form with a bidirectional LSTM which is then used
to parameterize a distribution from which a latent vector is sampled. A decoder is then used
to reconstruct the input from this vector and when trained, samples and interpolations can
be drawn from the latent space to generate new music similar to what the MusicVAE was
trained on. In essence, it is a sequence to sequence (seq2seq) model. Additional conditioning
can be introduced to any VAE by adding information to both the parameterization of the
latent space distribution as well as to the decoder which ideally causes the VAE to form
different latent spaces for different conditionings, which a decoder then uses along with the
initial conditioning to restore the input (Sohn et al., 2015). It has been shown in the
realm of algorithmic composition with neural networks that the VAE effectively uses the con-
ditioning as conditioning only without redundant modelling of the conditioning content itself
into the latent space (Teng et al., 2017; Simon et al. (MusicVAE), 2018). Arbitrary
extra conditioning, additional to the attractive properties of a structured latent space, is thus
easily leveraged with the MusicVAE.

C.4 Have no restrictions on the length of the output music.

The MusicVAE in its original form encodes music of fixed lengths (2-, 8- and 16-bar fragments)
whereas the model to be implemented is supposed to be able to model music of arbitrary
length. One general idea to remedy this with a VAE is to model sequences with one VAE at
every time step (Chung et al. (VRNN), 2015) instead of in a seq2seq fashion. However,
this would be a step too far away from the MusicVAE architecture which has proven to be
good for music. The use of a VAE at every time step in a recurrent model would effectively
imply sampling the next time step based on either only the state of the RNN or additionally

4 METHOD 109

based also on the previous step. If we consider chunks of music larger than a single time
step, we can mimic this in the MusicVAE by using conditioning on some size musical context
which is also passed as conditioning to the decoder. Even though this context would have
some fixed (perhaps relatively small) receptive field of the musical history (context) it would
provide at least some context. To the contrary, RNNs have an unlimited receptive field in
theory, but it is commonly known that the temporal scope of RNNs in practice is far from
unlimited.

As an example, by supplying a unit A as conditioning context while reconstructing unit A +
1, we can train a MusicVAE-like model so that after training, B + 1 is sampled and decoded
with a given context B (seed or some start token), after which we in the next iteration use
B + 1 as context and reiterate the sampling and decoding to reconstruct B + 2 and so on.
With this, we can, at least in theory, sample music of arbitrary length.

C.1 Model polyphonic music.

C.2 Model a variable number of different instruments.

Given the basic design borrowed from MusicVAE, conditions C.1 and C.2 are not integral to
the overall design but instead to the layout of the decoder. The original MusicVAE models
monophonic music in a time slicing fashion and applies a predetermined number of decoding
units when modelling polyphony (Roberts et al., 2017, Roberts et al., 2018). Later uses
of the MusicVAE take a step away from the time slicing and model polyphony in each decoder
unit but still makes use of a predetermined number of decoders for different instruments
(Simon et al., 2018). To fulfill the two above conditions, there is an imminent need
to pick a new decoder model rather than use the original MusicVAE decoder which places
a predetermined assumption on the number of simultaneous voices or instruments in use,
which violates condition C.2. Out of the paragons, both BachProp, BALSTM and BachBot
are candidates but since the BALSTM provides transpositional invariance, it is superior to
the others, which are therefore discarded as decoders. This design choice is extra important
when modelling music that modulate since transposing all music to the same key, which is
often done as a countermeasure in models that are not transposition invariant, then becomes
an arbitrary operation; ideally we would like to transpose all constituent parts to the same
key but this would require extra preprocessing and annotations. In some publications, all
music is transposed to all or several keys to remedy the problem of transposition but this
is intuitively inefficient since there is really no new information coming from the transposed
music and thus, the model has to learn seemingly different patterns that are innately the same.
With transposition invariance then comes less redundant training data and the ability for a
model to modulate and still fully use what it has learned, but with reference to different keys.
At the moment, only the BALSTM has this ability and since the final goal is to model Mahler
symphonies, which are highly modulatory, the property of transposition invariance is highly
valuable and so the BALSTM will be used as a decoder in the model to come, along with
a baseline RNN decoder for comparison. The BALSTM has also been modelled with extra

110 4 METHOD

output units to account for rearticulation (Johnson, 2017) which is suitable since we might,
depending on the internal data representation, need extra outputs for additional properties
as well. By adding extra output units to model instrument, there is no theoretical limit
to which instrument is chosen for each note and each note will have an instrument without
placing an assumption on the total number of instruments to model at every time step.
Both the BALSTM and a baseline RNN decoder can model polyphony, either sequentially or
simultaneously with varying results and both can also have the choice of instrument added
as an extra output and so both fulfill conditions C.1 and C.2.

4.1.4 In-depth Design - Implementation Details
The aspects discussed for all models in section 3 are now reiterated and treated with respect to
the upcoming design choices.

• Application / Purpose: Composition

As with most models, the main application of the new architecture is composition.

• Domain: Symbolic

The targeted domain is symbolic music in its basic form as per condition C.7 in subsection
1.2. This means that music is represented as a series of events with pitch and duration placed
along a time line and played by an instrument (timbre). Dynamics and micro-timing and
other aspects are thus not attempted to be modelled and furthermore, only instruments with
pitch are modelled, excluding drums and other percussion that lacks pitch as per condition
C.8.

• Musical domain: Polyphony

The architecture in design should model free polyphonic music with an unlimited and flexible
number of simultaneous voices as per condition C.1 in subsection 1.2

• Genre:

The aim is to model all kinds of Western pitch-based music with the restriction to Western
music being inherent in the choice of available pitches and intervals as well as which instru-
ments are available. Since the final goal is to model late romantic symphonies, some design
choices have to be made placing some, but yet minimal, assumptions on the music, as per
condition C.6.

• Input representation: MIDI

This format has, by far, been the most common input representation in the history of algo-
rithmic composition with neural networks, and the few baselines that exist are with reference
to MIDI datasets. Given that symbolic music is to be modelled, a symbolic input representa-
tion, such as MusicXML or ABC, might ideally have been more appropriate. However, due

4 METHOD 111

to the availability of music in MIDI format, it will be used as input representation. Mahler
symphonies are available online in MIDI and using datasets that have previously been used is
also a great asset. The MIDI format is also well-used, in general, which makes different MIDI
synthesizers and utilities more common than corresponding for other formats. To respect
condition C.5, MIDI music must also be processed, as is, by a preprocessor, not requiring
any other manual intervention or extra annotations.

• Data representation:

The data representation is often seen as the most important part (Mozer, 1990; Mozer
and Soukup, 1991; Mozer, 1994) and it is sometimes stated that together with the
choice of dataset, it contributes more to success than all other aspects of an architecture
(Simon and Oore (PerformanceRNN), 2017).

– Pitch:

Pitch should be represented in an absolute, local manner as has been the most com-
mon way to represent it. Binary representations also generally work well with neural
networks. All the 128 pitches of the MIDI format need not be modelled but given that
a range of instruments should be modelled, the range of modelled pitches can not be
shrunk too much. Since the BALSTM is intended to be used as decoder, no transposi-
tions of training data will be done.

– Chords:

Supporting free polyphony, chords will not be modelled in any particular manner but
only as a collection of pitches sounding at the same time. Thus, all chords, or combi-
nations of pitches, are possible. This is a step towards placing minimal assumptions on
the music, as per condition C.6.

– Percussion:

Percussion with no pitch will not be modelled. Hence, living up to condition C.8.

– Duration:

Out of the previously given paragons, both PerformanceRNN and BachProp use a rep-
resentation of time that does not build on time slicing. The MusicVAE has also been
used along with a similar representation as is used in PerformanceRNN (Simon et al.,
2018). Roughly estimated, the absolutely most common way to represent duration is
by means of time slicing, and given that two (or three depending on how you see it)
out of the five paragons use a different representation indicates that, even though highly
intuitive for a human being, time slicing might not be optimal for a neural network. One
might have the impression that it is "harder" for a network to learn from a sequence of
events with no inherent pattern in offset and duration, and that time slicing solves this
elegantly, but when presented with such coincidences as described above, attention must
be paid. The downsides with time slicing, namely that we need to distinguish between
rearticulations and sustained notes, along with the fact that time slicing implies that

112 4 METHOD

the network has to learn how to repeat the same note for long sequences, which is a
non-musical property introduced synthetically into the training process, might be the
reason for this. Taking inspiration from the PerformanceRNN and especially BachProp,
a local absolute representation of duration and offset will be used. In both these models,
simultaneous pitches are represented sequentially with zero offsets in between (sequen-
tial polyphony), which is a feature that will also be adopted. Since we model music in
the symbolic domain and more specifically, written music in its basic form, durations
should be given in terms of note values, and not in absolute time (e.g. in ms.).

– Conditioning / additional inputs:

One might argue that the more accessible, via conditionings and additional inputs, the
training data is made, the more likely it is that an algorithm will take notice of exactly
the patterns that are made obvious to it. This might be both desirable and not depending
on what we are trying to do. For example, if the goal is to compose music similar to the
training data revealing as much as possible about its structure might be a good idea,
but if we instead aim for the network to discover very abstract and latent features that
we might not even be aware of ourselves, training a network with the data only, as is,
might be a better idea. One way to hypothesize is that with the latter setup, we aim to
a higher extent to generate progressive, new music, superficially dissimilar to the input.
In this work, the ambition is positioned somewhere in between these extremes and it
is attempted to generate music somewhat in an existing style, or at least in a mix of
existing styles. Subsequently, some basic conditioning rooted in elementary properties
of traditional music will be supplied to the network.

Relationship to underlying metric structure, beats, should be given as conditioning as is
done in many cases, to help correlate emphasized beats with the more frequently used
pitches from the scale. This might be even more important when not using time slicing
since the underlying meter, to some extent, is implicitly expressed with each beat always
containing the same number of slices.

Inference should be done by providing a context unit and then sampling from the VAE
and decoding. Alternatively one could also initially generate a latent vector from a
certain input unit instead of sampling it. After the seeding, the model can continue
to run by providing the reconstruction as context and then sample from the VAE and
decode anew.

• Model / architecture:

This section is omitted for now and deferred to subsection 4.2.

• Frameworks:

Implementation should be done in Tensorflow (Tensorflow.org, 2019) for several reasons.
First of all, custom operations requires a low-level framework with direct and easy access to
all intermediate data in a way that is not always straightforward with high-level frameworks.

4 METHOD 113

Choosing from the low-level frameworks, Tensorflow is the strongest upcoming one being, or
with potential to soon be, the machine learning standard framework.

Some MIDI framework should be used to read and write MIDI files.

• Datasets:

The final dataset will be a set consisting of as many Mahler symphonies as can be found in
MIDI format. Preferably, the model should be tried with simpler datasets before this and
these should, with advantage, be well known and used in studied publications.

• Evaluation:

The architecture should ideally be evaluated through loss and performance metrics as well as
through its capability to generate music with idiomatic properties and quality. The former
can be done by comparison to other models if the modelled properties are comparable to
others. If not, reconstruction metrics and evaluation with respect to a baseline is possible.
For qualitative evaluation, analysis of generated music should be done. A musical Turing test
and the use of a listening panel might be interesting evaluation methods in some cases, but
they don’t necessarily say anything about the music generated since there is often too much
uncertainty as to who is in the panel and how the music has been presented.

• Source code:

Source code should be made publicly available online through for example GitHub.

• Samples:

Samples should be made available online as well as written music in the results section.

4.2 MahlerNet
MahlerNet was implemented from scratch in Python with Tensorflow (Tensorflow.org, 2019)
in the spring of 2019 along with its preprocessor, using Mido as MIDI framework to read and write
MIDI files (Github.com, 2019). All the code along with instructions for running it are available
at https://github.com/fast-reflexes/MahlerNet and listening samples are available at the
MahlerNet website (http://www.mahlernet.se). MahlerNet is the result of the literature survey
presented previously in this work and draws inspiration in its architecture mostly from MusicVAE,
BALSTM and BachProp. The preprocessing draws inspiration mostly from PerformanceRNN
and BachProp. Mahlernet is essentially a sequence to sequence network with a VAE modelling
the latent space. A decoder is used to reconstruct offset, duration, pitch and instrument, basic
components of written music as demanded by condition C.7, at each time step. Since it is a
sequence to sequence network, the kind of modelling where a number of time steps are used to
predict the next, as can be done with a plain RNN model, is out of the question and the decoder
must produce the entire output from the latent code. However, the length of the sequence may
be adjustable to encompass a bar, a quarter note or something else. In the remaining part of this

https://github.com/fast-reflexes/MahlerNet
http://www.mahlernet.se

114 4 METHOD

work, this unit has been fixed to a bar, which is a variable measure given different time signatures.
The choice of a bar is arbitrary but a natural one given that it is large enough to contain some
musical patterns but still small enough not to contain sequences of events of such lengths that will
early on cause potential problems in a neural network, thus a good initial guess that might be
fine-tuned or further challenged in another work. A musical context preceding the music to model
can be used as conditioning as well as additional inputs holding information about underlying
metrical structure, currently sounding pitches and currently sounding instruments. After training,
music can be sampled from MahlerNet and then reconstructed using the decoder and with the
help of a conditioning context, the idea is that some long-term structure is enforced. MahlerNet is
highly configurable and except for the regular choices that can be made with respect to layers and
layer sizes, MahlerNet implements batch normalization, dropout and scheduled sampling. A VAE
loss with free bits and a β parameter are further optional features. In the sections below on the
different components of MahlerNet, full modelling using all features is considered to give as much
insight as possible.

4.2.1 Modelled Properties
MahlerNet models polyphony in a sequential manner with the properties of offset to previous
event, duration, pitch and instrument at every time step. It is possible to model any subset of the
properties with the property of pitch being non-optional.

4.2.1.1 Offset and Duration

In this subsection, duration can refer both to the property duration (of an event) being modelled
but also to the values that are used for both the duration and offset properties.

Offset is the property that makes time move forward and much like how time progresses in MIDI,
it marks the amount of time, in some unit, that has passed since the previous event. Conversely,
duration indicates for how long, in some unit, that an event will last for. Offset and duration
are modelled in the same way with 60 classes when modelled in a local fashion. Optionally,
offset and duration can also be modelled in a distributed fashion where only 11 classes are used.
These 11 classes, along with the zero duration, are the base classes, consisting of both duplet and
triplet durations. They represent a basic set of durations and no matter the representation, all
other durations are constructed from them. The zero duration is not explicitly modelled with
a distributed representation, where instead the lack of any active class represents this duration,
whereas with a local representation, the zero duration is explicitly modelled. Durations not in
the set of base classes are called compound durations, and they consist of merges of at least two
different durations from the basic set, never including the zero duration.

4 METHOD 115

3 3 3 3 3

-
Graphic 4.1: The set of 12 basic durations with the zero duration first.

Among all durations, some are more idiomatic for music than others. The 12 base classes are
very common but the more members of the base classes that are added together (in a way so that
they can’t be expressed as another duration) to construct a new compound duration, the more
uncommon it tends to be. Compound durations consisting of two members from the base classes
are also very common but three is more uncommon whereas four is very uncommon. Nevertheless,
since the property of offset is also modelled with these durations, all sorts of compound durations
occur. The offset and duration properties have their durations ordered in ascending order so that
a distance measure between a prediction and the correct class can be induced to measure the
magnitude of the prediction error.

333

+

3

+ + +

Graphic 4.2: First two compound classes consisting of 2 and 3 durations from the basic
set and then an example of a basic duration since even though it can be divided into other
durations, the constituent durations are not different.

The shortest duration, except for the zero duration, is a 32nd note (demisemiquaver) and the
longest is a 32nd note less than five quarters. This may seem like an arbitrary choice but has been
chosen with respect to somewhat common situations with syncopes before a bar line that last for
the full duration of the next bar. Longer notes than the maximum duration are divided into full
bar notes with the first and the last subdurations being any appropriate class. Time signatures
that use a triple meter are represented in duple meter with a triplet subdivision and the music
modelled is limited to a few chosen time signatures.

Graphic 4.3: The accepted time signatures modelled by MahlerNet. Duple meters on top
and triple meters below.

116 4 METHOD

Any multiples of the numerator of the above time signatures are also accepted, should the denom-
inator be the same. In these cases, each bar is simply broken down and interpreted as a number
of bars of one of the accepted time signatures. During preprocessing, all different time signatures
are parsed as ranges and all subsequent ranges form an input chunk of consecutive music, as seen
from the perspective of MahlerNet. Parts of pieces with other time signatures than the above are
discarded, resulting in an actual input song being divided into several.

4.2.1.2 Pitch

MahlerNet models 96 pitches ranging from one-indexed MIDI pitches 17 (incl.) to 112 (incl.)
corresponding to the range from F0 to E8. The 32 remaining pitches were excluded due to that
they hardly ever appear in any music.

4.2.1.3 Instrument

To try out MahlerNet and make processes simpler, a group of 23 different instruments have been
modelled instead of all of the 128 available MIDI instruments, even though there is no inherent
restriction in the architecture that forces this. The chosen instruments are capable of representing
all the different classes of timbres and during preprocessing, the 128 MIDI instruments are mapped
to one of these 23 instruments. Percussion, typically modelled on MIDI channel 10, is ignored as
well as that specific channel.

Number MIDI Instrument (number) Number MIDI Instrument (number)
1 Acoustic Grand piano (1) 13 Trombone (58)
2 Drawbar Organ (17) 14 Tuba (59)
3 Electric Guitar (clean) (28) 15 French Horn (61)
4 Electric Bass (finger) (34) 16 Brass Section (62)
5 Violin (41) 17 Tenor Sax (67)
6 Viola (42) 18 English Horn (70)
7 Cello (43) 19 Bassoon (71)
8 Contrabass (44) 20 Clarinet (72)
9 String Ensemble 1 (49) 21 Flute (74)
10 Timpani (48) 22 Synth Lead (square) (81)
11 Choir Aahs (53) 23 Pad 1 (new age) (89)
12 Trumpet (57)

Table 4.1: MIDI instruments that MahlerNet models and to which all other encountered
instruments are mapped. MIDI instrument number in parenthesis.

4 METHOD 117

4.2.2 Preprocessor
The preprocessor works on the representation of MIDI files as returned by Mido where the tracks
of a MIDI file are arrays of Mido events. The preprocessor is a pipeline where several functions
processes the events of a file iteratively, each time adding to or normalizing some aspect of it.
Several settings can be done in the preprocessor resulting in representations of different size. For
example, the range of modelled pitches can be set as well as which basic durations to mark in
the underlying meter via the beats vector. The output of the preprocessor for a given MIDI file
is a tuple containing meta information about the preprocessing as well as a series of data vectors
consisting of all the events in the file.

4.2.2.1 The MIDI Format

The MIDI format was proposed in 1981 and is an incredibly rich format that allows for a detailed
representation of music of all forms. MIDI can be recorded from electronic instruments and thus
capture live music performance as good as it can store written music in symbolic form generated
by music engraving software. Albeit, there is not a one-to-one mapping between MIDI and written
music.

A MIDI file is a sequence of data chunks with one header chunk and one or several track chunks,
containing data for a track (ntu.edu.tw, 2019). MIDI files come in three flavours where type 0
holds a single track, type 1 holds multiple tracks that are to be played simultaneously and type 2
holds multiple tracks to be played independently. Type 1 is typically most common when listening
to general music recorded as MIDI.

A track is an ordered series of events grouped together in some way. It typically represents an
instrument or a voice (in polyphony) but there is no restriction against placing all events in the
same track in a MIDI file. However, the track concept makes it easier to visualize the music in
sequencers for example. Each track holds many type of events and meta events. Turning on or
off a note (pitch) are two types of events but also a change in tempo, change in key signature or
selecting a new program (instrument) for a given channel. There is no restriction on the number
of tracks in a MIDI files but actual sounds go out through the concept of channels, which are 16
to the number in standard MIDI. Different tracks can start and end output on any channel.

MIDI events use relative timing and given that time is 0 at the beginning of a MIDI file, every
track, independently, uses an offset for each event to distinguish how many ticks have passed since
the last event in the track. Each MIDI file has a ticks per beat indication which indicates how
many ticks that corresponds to a quarter note. The concept of tempo is also used, and can be
changed during the course of a MIDI file, and refers to the number of microseconds per quarter
note. The default value for ticks per beat is 120 and the default for tempo is 50000 microseconds
per beat. These two values form a conversion system between actual time and note values which
must be used in order to convert MIDI music to both sounding and written music. Needless to

118 4 METHOD

say, with the default values used here, MIDI has the ability to express micro-timing on a high level
and as previously stated, the length of a MIDI event does not necessarily correspond to a feasible
written duration.

Worth to point out is that typically, both channels and tracks provide information about music
grouped somehow in the MIDI file. Channels because a channel only plays one instrument at a
time and all events being output on the channel thus correspond to the same instrument being used
which is equal to a grouping of the music played. Conversely, tracks, as stated, are also typically
either the same instrument groups or subdivisions of those in voices.

The most intuitive format of how a MIDI file is played is acquired by merging all tracks and then
updating all offset counts accordingly.

4.2.2.2 Tokenization

The initial step of the preprocessing is the tokenization which in turn is divided into two parts.
The first part is called streaming because it streams all the events from the input file, track by
track, into a list where each event is wrapped with additional information about what track it
comes from and with an absolute timestamp, as opposed to the relative timestamp used in MIDI.
All events except events turning notes on and off, tempos, time signatures and program changes
(instrument changes) are discarded. The next step is the actual tokenization in which the list
from the previous step, ordered in ascending order with respect to the absolute starting time
of the events, is processed anew. The purpose now is to merge events starting a note with the
corresponding end event so that a duration in ticks can be calculated for each note. During this
step, tokens within the same track are prolonged and shortened using a heuristic with the purpose
to normalize MIDI files resulting from recordings. The idea is that, for example, when recording
on a piano, the player is likely to both start and end notes both early and late at times, and by
looking at previous and next notes in the same track, one might conclude whether to shorten or
prolong a note. For example, if two relatively long notes are played after each other and there is
an overlap corresponding to only a small fraction of this duration, the first note was probably held
too long. An analogue reasoning goes for notes being released slightly early. During tokenization,
the list indices of encountered time signatures are stored. Each output event is associated with
an instrument and encountered instrument changes are used to govern this. Current tempo is also
stored for each token. After tokenization, a MIDI file is a list of tokens where each token has a
duration in ticks, an instrument, an absolute starting time with respect to the start of the file and
a tempo. The list is sorted in ascending order with respect to absolute starting time and pitch
height. At this point, a note is represented by one event, and not two indicating start and end.

4 METHOD 119

4.2.2.3 Processing

From this part of the preprocessing, the list of event tokens is chunked into ranges of tokens where
each range corresponds to a time signature. In all subsequent steps, these ranges are processed
individually but if they are uninterrupted, they are merged in the data representation. Interrup-
tions occur when some illegal time signature, e.g. a time signature that can’t be handled by the
preprocessor, is encountered. This effectively creates an interruption in the MIDI file and the sub-
sequent part, if any, is considered an entirely new piece of music in the data representation. The
term chunk is used to denote such a series of one or more contiguous ranges and a range is simply
a series of events not interrupted by a new time signature event.

The processing step is divided into three substeps. The first step is called quantization and align-
ment and represents the most elaborate step of the whole preprocessing procedure. It starts out by
finding candidates among the duration classes for the duration (in ticks) of an event. Depending
on input duration in ticks, a number of candidates from the overall list of classes is returned, both
longer and shorter than the current duration of the event. A heuristic algorithm is then used to
calculate a score for each candidate that is based on the difference between the current duration
and the duration candidate. The score is also based on the difference between the current starting
time of the event and the time when the event would preferably have to start given the candidate.
The idea is to analyze the partial components (basic durations) of the candidate and align the
largest or second largest partial in a way that is acceptable relative to the underlying meter. This
may force the starting time of the event to be moved which contributes to the score. The heuristic
uses information about both tempo and track to determine which of a set of predefined overall
lists that the candidates are chosen from; in a fast tempo, 32nd notes are excluded and when the
previous note was a triplet, some of the duplet durations are excluded, for example. The lowest
score wins and after this first step of processing, each event has been aligned and quantized and
represents its duration with one or several durations classes instead of a duration in ticks. Notes
longer than the maximum duration are divided into as many durations as is necessary and are
taken care of by picking candidates for the durations arising after removing as many full bars as is
possible. MahlerNet thus divides long notes into several shorter notes.

The second step of processing is called unification and here, notes are unified in the sense that
vertical groups of pitches are aligned and prolonged or shortened depending on the majority vote
of the group. Track info are used here as well to determine which events to unify.

Finally, in the third part of processing, events are split into several sequential events whenever an
event duration cannot be expressed with one duration class only. Also, each event is anew divided
into two and an end event is placed out chronologically for all events. Nonetheless, the starting
events still hold all vital information and the end events are simply there to facilitate the use of
active pitches and instruments in the data representation. After the processing step, there is a one
to one mapping between the list of tokens and their data representation.

120 4 METHOD

Recording into MIDI

MTHd	...	MIDI	type	1	...	Ticks	per	beat:	96	...
...

MTrk	...
...	

				Event:	...type:	note_on,	pitch:	43,	time:	5
				Event:	...type:	note_off,	pitch:	43,	time:	375

...
MTrk	...

...
				Event:	...type:	note_on,	pitch:	67,	time:	44
				Event:	...type:	note_on,	pitch:	70,	time:	44
				Event:	...type:	note_off,	pitch:	67,	time:	4
				Event:	...type:	note_on,	pitch:	77,	time:	5
				Event:	...type:	note_on,	pitch:	80,	time:	2
				Event:	...type:	note_off,	pitch:	80,	time:	277
				Event:	...type:	note_off,	pitch:	77:	time:	3
				Event:	...type:	note_off,	pitch:	70,	time	0

...

NoteEvent(time:	5,	pitch:	43,	dur.:	370,	trk.:	2)
NoteEvent(time:	44,	pitch:	67,	dur.:	44,	trk.:	1)
NoteEvent(time:	88,	pitch:	70,	dur.:	291,	trk.:	1)
NoteEvent(time:	97,	pitch:	77,	dur.:	282,	trk.:	1)
NoteEvent(time:	99,	pitch:	80,	dur.:	277,	trk.:	1)

Quantization
																				and	Alignment

NoteEvent(time:	0,	pitch:	43,	dur.:	384,	trk.:	1)
NoteEvent(time:	48,	pitch:	67,	dur.:	48,	trk.:	2)
NoteEvent(time:	84,	pitch:	70,	dur.:	300,	trk.:	2)
NoteEvent(time:	96,	pitch:	77,	dur.:	288,	trk.:	2)
NoteEvent(time:	96,	pitch:	780,	dur.:	288,	trk.:	2)

NoteEvent(time:	0,	pitch:	43,	dur.:	384,	trk.:	1)
NoteEvent(time:	48,	pitch:	67,	dur.:	48,	trk.:	2)
NoteEndEvent(time:	96,	pitch:	67)
NoteEvent(time:	96,	pitch:	70,	dur.:	288,	trk.:	2)
NoteEvent(time:	96,	pitch:	77,	dur.:	288,	trk.:	2)
NoteEvent(time:	96,	pitch:	80,	dur.:	288,	trk.:	2)
NoteEndEvent(time:	384,	pitch:	43)
NoteEndEvent(time:	384,	pitch:	70)
NoteEndEvent(time:	384,	pitch:	77)
NoteEndEvent(time:	384,	pitch:	80)

Unification	and
																				finalization

To	data
representation

1000....0000	10000000	000.1....000	00000...10	1000...0	0	000.........000	0000...0000
0001....0000	01000000	000..1...000	00010...10	1000...0	0	000.1.......000	1000...0000
0001....0000	00100000	000...1..000	00000..100	1000...0	0	000.1.......000	1000...0000
1000....0000	00100000	000....1.000	00000..100	1000...0	0	000.1.1.....000	1000...0000
1000....0000	00100000	000.....1000	00000..100	1000...0	0	000.1.11....000	1000...0000

Offset	(60)

Beats	(8)

Pitch	(96)

Duration	(60)

Instrument	(23)

START	token	(1)

Active	pitches	(96)

Active
Instruments	(23)

TOKENIZATION

PROCESSING

Streaming
																							and	tokenization	

Graphic 4.4: Schematic showing the different preprocessing steps and a simple illustration of how
data is transformed. The input to the preprocessor is MIDI and the recording to MIDI is not done
as a preprocessing step since available MIDI data has been used. This step is nonetheless included
to emphasize that there is not a one-to-one correspondence between written music and MIDI, hence
the necessity for elaborate preprocessing.

4 METHOD 121

4.2.2.4 Data Representation

This is the final step before the MIDI file has arrived to its data representation. This step is rather
simple and processes the tokens, and for each start token, a vector representing a new time step
is added to the output holding the offset, duration, pitch and instrument of the given event. For
each event is also added a beat vector showing if the current starting time is aligned on an eighth
note and if so, where in the bar this eighth note is. Ending events are used to keep track of the
active pitches and active instruments maps that are supplied as well to each time step, optionally
used to make it easier during training to predict the next pitch and instrument. All in all the data
representation used for the experiments to come has 367 dimensions event though the preprocessor,
as said, allows for options that may change this number. The effective number of dimensions may
also change depending on what options are used in training. A single dimension holds a START
token, set to 1 only for the first time step of contexts that include units of music from before a
piece have started, i.e. when the music to reconstruct is the first bar of a piece.

4.2.3 Encoder
The encoder part of MahlerNet has two encoders in it capable of encoding one unit of music each.
Both encoders are bidirectional RNNs with a variety of cell options (both LSTM and GRU). Two
different variations on the bidirectional RNN, governing how the bidirectional information is passed
between layers can be chosen from as well. The input encoder encodes the unit of input music that
is to be reconstructed by the decoder during training. The context encoder encodes the unit of
music preceding the input unit, used to condition both the VAE and the decoder during training.
During inference, the context is used to condition the decoder that reconstructs from a latent vector
sampled from the VAE.

After encoding, the forward and backward final states of the encoders are concatenated and passed
to the VAE.

4.2.4 Variational Autoencoder
The variational autoencoder (VAE) uses the summary from the encoder component and passes it
through two feedforward layers to yield a parameterization for the latent space in terms of mean
and logarithmic variance. The former has no activation whereas the second feedforward layer uses a
softplus activation function as is common for the variance part of the VAE. The reparameterization
trick is used whereby a sample from a standard Gaussian is used as a constant to multiply the
variance with to yield a sample from a Gaussian distribution with the previous mean and variance
without breaking the ability to propagate gradients through the VAE.

The sampled latent vector can be used to condition the decoder in multiple ways. For example, it
can be used to generate different or similar projections for multiple layers and starting state and
also be used as conditioning during decoding in every time step. For the experiments in this work,

122 4 METHOD

all initial states of all layers of the decoder are initialized with the same projection of the latent
vector which is also passed as conditioning in every time step during decoding.

4.2.5 Decoder
The decoder uses the latent vector sampled from the VAE and produces its initial states by running
the latent vector through a linear layer with tanh activation, as is done in the MusicVAE. As
described above, the same projection is used as conditioning during the entire decoding process.
The recurrent part of the decoder is modelled either by a "regular" decoder that consumes the
feature vector as a whole each time step, or a BALSTM that divides each batch sequence into 96
sequences individual for each pitch. The "regular" decoder is from hereon referred to as an RNN
decoder and it can be used with different cells, such as GRU or LSTM cells.

4.2.5.1 RNN

An RNN decoder models the full range of pitches, along with other features, as one input vector
and may thus not, at least intuitively, account for pitch invariance since pitch patterns shifted a
number of steps will look different to the RNN and yield different output. However, a regular RNN
is simple to work with and lends itself to use with scheduled sampling in an easy way. Unfortunately,
the extra conditionings available with beats and active pitches and instruments depends on the
original sequence (correct sequence) and can thus not be used with scheduled sampling when using
the regular RNN decoder.

4.2.5.2 BALSTM

The BALSTM uses the notion of time axis and note axis, hence its name BiAxial LSTM. The
original BALSTM models all pitches occurring at the same time in a single time step, but inde-
pendently in one LSTM per pitch. The output of the time axis module is a binary node with
sigmoid activation (or softmax activation over two classes) determining if that note should be on
or not. Up to this point, all notes in a time step are independent of each other. The note-axis then
processes the notes from lowest to highest, again recurrently but now in the note-axis, to yield the
final output probability at which time the notes in a time step are no longer independent.

There are two important concerns to address with respect to MahlerNet at this point. First of all,
since MahlerNet does not model several notes in a time step, the role of the note-axis module is
unclear. Furthermore, the binary output nodes of both the time-axis and note-axis modules allow
for several notes to be sampled as active during a single time step whereas in MahlerNet, we must
only allow one pitch to be active in a given event. To address these issues, a modification of the
BALSTM is introduced whereby the note-axis is removed and the output of the individual pitch
RNNs are concatenated to form the input to a softmax layer that yields a distribution over all the
possible pitches. Since all pitches are modelled individually and only with a window spanning its

4 METHOD 123

close vicinity, the transposition invariant property holds even though the biaxial property is really
reduced to a uniaxial one. Nonetheless, the fact that this design stems from the BALSTM allows
for it to be called a variant of the BALSTM.

Due to previous observations, the inputs to the modified BALSTM with respect to the original, are
also changed. The original BALSTM receives a vector of last time step activities in the two-octave
vicinity of the pitch to be modelled along with an octave vector of activities across invariant pitches
over the whole range. This setup does not seem to be optimal considering that the last time step
contains only one active pitch. Instead, we serve the modified BALSTM with the vicinity vector
only and also, optionally, a vicinity vector from the active pitches map which indicates which
pitches are currently active.

As per recommendation in DeepJ, the vicinity vector is also replaced with a one-dimensional
convolution over the vicinity where 64 filters are used. In DeepJ and the original BALSTM, the
surrounding range of an octave in both directions is used as vicinity whereas Mahlernet uses two
octaves plus 1 note, placing the pitch to model in a range where it has access to the same pitch
class one octave up and one octave down. In places of the register where the range doesn’t extend
further, the input is zero-padded, as is also done in the original BALSTM network. The MIDI
pitch number to be modelled by a specific instance of the pitch RNN is also included as a one-hot
input. In DeepJ and BALSTM, this input is a discrete number instead.

One downside of using the BALSTM is that it makes scheduled sampling incredibly complicated
since sampling from a single pitch RNN instance would not make sense since all instances from a
given time step must be used for sampling to take place. This implies that groups of pitch RNNs
modelling all pitches in a time step for a batch sequence must be sampled simultaneously which
requires an elaborate customization. Scheduled sampling is thus not used with the BALSTM in
the experiments to come.

4.2.6 Output Layers
The output from the recurrent part of the decoder in MahlerNet is run through softmax output
layers to acquire distributions over each of the modelled properties which are modelled at every
time step. This is a step away from the representation in PerformanceRNN where each time step
only models one property and the network has to choose between progressing time, turning pitches
on or off and adjusting the dynamics. The advantage of the latter representation is that zero offsets
need never be modelled which is a must in MahlerNet whenever no time passes between events.
As in BachProp, offset is modelled first, then duration which is also conditioned on the current
time step offset along with beats. Conditioned on all of the above, pitch is then predicted and then
finally instrument. Modelling properties separately (as is sometimes the case when modelling for
example pitch and duration only) is not an option since the properties clearly correlate; a short
duration allows for a pitch much more dissonant to the current key than does a long duration.

124 4 METHOD

Graphic 4.5: Mahler-
Net in its entirety
when all its condition-
ing functionality is
used. At the top, the
preprocessor generator
generates training
data for the input and
context RNNs. The
context part of the
network can be turned
off, in which case
all the connections
arising from the right
bidirectional RNN in
the figures are left out.
The contextual RNN
is fed with content
appearing in the source
data one unit (here a
bar of music) before
the input. That is, if
the input consists of
bar 5 out of a piece
of music, the context
gets fed with bar 4.
The input part is what
MahlerNet is supposed
to reconstruct during
training. When the
input is fed with the
first unit of music,
the context is fed with
a special start token
only. During train-
ing, the input is also
fed (shifted one time
step starting with an
all-zeros time step) to
the decoder whereas
during inference, or
when using scheduled
sampling, the next
time step is supplied
from the output of the
output layers. Output
layers, except pitch,
may also be turned off
to model a subset of
the properties. Inputs
are always merged
by concatenation and
never by addition.

00101101101
00011010110
01001110101

00101101101
00011010110
01001110101

CTX PREPROCESSINGINPUT PREPROCESSING MIDI DATA

0
1
0
1
0

1
0
1
0
0

Bidirectional RNN

Variational
Autoencoder

µσ

X~N(0,1)

RNN

00101101101
00011010110
01001110101
00111000000
01000000000

00111000000
01000000000

00111000000
01000000000

0
1
0
1
0

ENCODER

VAE

OUTPUT LAYERS

Concat

Bidirectional RNN

DECODER

Concat

duration

pitch

instrument

0
1
0
1
0

1
0
1
0
0

0
1
0
1
0

INPUT

0 1 0 1 0 1 0 1 0 0 0 1 0 1 0

00101101101
00011010110
01001110101
00111000000
01000000000

offset

YERSOUTPUT LA

4 METHOD 125

Two other mechanisms are also in place to further guide the outputs of MahlerNet. On rare occa-
sions, the preprocessor must output empty time steps that only makes time progress. This happens
for example when there is a need to align a triplet subdivision to the next duplet subdivision or vice
versa. Evidently, in these situations, the offset property will be non-zero, since there is otherwise
no point to output an empty time step. With this information, the duration logits are masked
so that whenever the offset is zero, the zero class of the durations logits are set to a very large
negative number, to make it virtually impossible to predict the zero duration class. The same sort
of masking takes place when outputting pitch, effectively setting all pitch logits corresponding to
pitches below the one of the last time step to large negative numbers whenever the offset is zero.
Alas, events are ordered when output from the preprocessor in ascending order both on starting
time and on pitch and so a lower pitch can start after a higher pitch if no time passes in between.

4.3 File Organization
The implementation of MahlerNet contain several files and a certain file organization is in place
both with respect to training data and the actual program files.

The following files together make out the implementation done in this thesis:

<MAHLERNET ROOT>

|

|- MahlerNet.py

|- RunMahlerNet.py

|- MidiPreprocessor.py

|- ProcessFolder.py

|- DataProcessor.py

|- DurationFactory.py

|- Events.py

|- Instruments.py

|- display_stats.py

|- utilities.py

The actual network is implemented in MahlerNet.py whereas the file RunMahlerNet.py man-
ages training and generation with several preconfigured alternatives. MidiPreprocessor.py is
the preprocessor for MIDI and it is used by DataProcessor.py that outlines several functions
that batch processes a group of files. For example, it can turn a group of MIDI files into data
representation, output MIDI files from a data representation and set up generators from sin-
gle or multiple files stored in data representation format. ProcessFolder.py is a convenience
class on top of DataProcessor.py that manages calls and command line arguments in a simple
way. DurationFactory.py, Events.py and Instruments.py contain classes used for processing

126 4 METHOD

by MidiPreprocessor.py. Finally, display_stats.py consumes command line arguments and
displays statistics about one or several training sessions using the records file created after ev-
ery training session (if this option is turned on). utilities.py contains a few general functions
connected to formatting.

The input data is expected in a specific format:

<DATASET ROOT>

|

|- input

|- data

|- seq

|- midi

|- runs -------|

<UNIQUE TRAINING SESSION ID>

...

<UNIQUE TRAINING SESSION ID>

|

|- params.txt

|- all_params.txt

|- commands.txt

|- graphs

|- trained_models

|- records

|- generated

The input folder is expected to have all the dataset MIDI files in a structure that is flat or
hierarchical with subdirectories. This doesn’t matter since DataProcessor.py will gather all the
files it can find in the directory subtree. After conversion to data representation, all the files (that
were successfully turned into data representation) are represented in the data folder as well. In
this folder, all the files lie separately but in data representation. For training, the seq folder is
constructed that contains sequences of the desired length (in the experiments, we always assume
that a unit of music is one bar but MahlerNet supports other choices as well. In the seq folder, files
are created that hold sequences of the same length, to make training more efficient. If desirable,
one could turn the files in the input folder back into MIDI representation to have a glimpse at
what they look and sound like after conversion to data representation, in which case they are stored
in the midi folder.

Every training session requires a unique name which is used to store data about the session in the
runs folder. In this directory, all the training sessions for the given dataset reside with unique
names. The structure in such a training session folder is the same for all sessions and the META

4 METHOD 127

files params.txt, all_params.txt and commands.txt contain the input parameters used to run
the session, all of the parameters (including the internal parameters that cannot be modified via
an input configuration) used to run the session and finally the command used to initialize the
session. In the graphs subfolder, graphs saved from the session can be found (if this option is
turned on) and in the records subfolder MahlerNet saves statistics about the training session in
a file named records. trained_models contains models saved during checkpoints while training
and if anything is generated, during or after training, it is saved in the generated subfolder.

4.4 Running MahlerNet
Most of the executables have an argument parser that allows for help and information about
arguments via the --help flag. Nonetheless, a few typical use case scenarios are presented below.
Running MahlerNet itself requires an external configuration file that must contain information vital
to building the network prior to training or running inference tasks. An example configuration file
can be found at the MahlerNet Github page at https://github.com/fast-reflexes/MahlerNet.

To convert all the MIDI files in the folder <FOLDER>/input to data representation placed in
<FOLDER>/data run

python ProcessFolder.py <FOLDER> -d

Similarly, to convert to data representation and training sequences (using a bar as a unit of music)
and convert the data representation back into MIDI to store in the folder <FOLDER>/midi, run

python ProcessFolder.py <FOLDER> -dsm

To run a training session named <ID> with dataset root folder <DS_ROOT> and config <CONFIG>.

python RunMahlerNet.py train <ID> --root <DS_ROOT> --config <CONFIG>

During training, both the average time step loss as well as average accuracy metrics are displayed.
Since the model in general must choose one class for each property every time step, and there is
one correct class for every property at every time step, the precision and recall metrics are always
the same. The accuracy shown during training is, in fact, exactly the precision or recall metric.

To display statistics about the reconstruction percentages for individual properties after running a
training session named <ID> on the dataset located in the <DS_ROOT> folder, run

python display_stats.py p <PLOT_NAME> <DS_ROOT>/runs/<ID>

The PLOT_NAME is just a name to print in the diagram legend and any number of pairs <PLOT_NAME>
<PATH_TO_DATASET_FOLDER/runs/ID>, where ID is a valid training session identifier for that dataset
can be used to display multiple statistics at once.

https://github.com/fast-reflexes/MahlerNet

128 4 METHOD

To reconstruct the first bar in a given file <INPUT_FILE> available under that name in the data

folder of the dataset root in question, run

python RunMahlerNet.py generate <ID> --root <DS_ROOT> --type recon --file

<INPUT_FILE> --units 0cz --model <CHECKPOINT_NAME>

The sample is placed in the generated folder previously mentioned and <CHECKPOINT_NAME> has
to be the name of a checkpoint saved in the trained_models directory of the runs folder named
<ID> situated in the dataset folder <DS_ROOT>.

Conversely, run

python RunMahlerNet.py generate <ID> --root <DS_ROOT> --type pred --length

10 --meter 3 --file <INPUT_FILE> --units 0cz --model <CHECKPOINT_NAME>

to sample a 10-bar sample from the same model as above, in 3/4 meter seeded by a context with
only a START token (since we are reconstructing the first bar of a file) and an initial latent vector
generated from the first bar in the given input song.

To measure performance on the reconstruction of an entire dataset with teacher forcing, run

python RunMahlerNet.py generate <ID> --root <DS_ROOT> --type n_recon --model

<CHECKPOINT_NAME> --use_teacher_forcing

More info about running MahlerNet can be found on the project Github page https://github.

com/fast-reflexes/MahlerNet.

4.5 Experiments
MahlerNet was continuously developed and tested for several months. The experiments were di-
vided into three parts with increasing difficulty. In the last part, Mahler symphonies were modelled.
The first part focuses on modelling pitch only with the ESSEN and SESSION datasets whereas the
middle part uses the intermediate datasets NOTTINGHAM, PIANOMIDI and MUSEDATA. In
the last part, MAHLER is used, which is a dataset with most of the Mahler symphonies gathered
specifically for this work. More info about the datasets is presented in section 5 and in Appendix
G.

https://github.com/fast-reflexes/MahlerNet
https://github.com/fast-reflexes/MahlerNet

5 RESULTS
MahlerNet was tested in three experiments with different circumstances. The first two experiments
have the same main flow but the second experiment is much more elaborate and explores all features
of MahlerNet. In the third experiment, the ordeal of modelling Mahler symphonies is taken on.
In the first experiment, only pitch is modelled with basic settings whereas in the second and
third experiment, all properties modelled by MahlerNet are included in the test. Training was
done on a GeForce GTX1080Ti GPU. All samples are sampled at softmax temperatures of 1.0 if
nothing else is said. The presented samples are neither the result of extreme cherry-picking nor the
first samples to be generated but typically the best from about 2-4 attempts per shown example
and thus moderately representative of what the models can actually accomplish. No elaborate
postprocessing has taken place on any sample (except direct conversion with the preprocessor to
MIDI) and all samples can be heard at the MahlerNet website (http://www.mahlernet.se) using
the sample numbers that are stated whenever samples occur. A few samples are shown in this
section but due to lack of space, too many couldn’t be fitted. It is advised to follow along in the
samples on the website while reading.

Wherever accuracy or reconstruction is mentioned, the percentage refers to precision, or recall
since given the problem context these two metrics are the same. This in contrast to another
interpretation of accuracy which takes true negatives into account as well, generally resulting in a
misleading metric stationary around 100%.

5.1 Experiment 1: Modelling Pitch
In this experiment, MahlerNet was used both with and without the contextual input used to
condition the VAE and the decoder to create longer coherence, and was subsequently sometimes
run as a plain sequence to sequence model only using a VAE. No dropout or any other regularization
was used except for the VAE loss which was used in its standard form, and as such, constituting
a sort of regularization.

Encoder VAE Decoder Learning rate
2*128 64 2*128 0.001

Table 5.1: Basic setup for experiment 1.

In this experiment, the ESSEN and SESSION datasets were used. Both of these mainly contain
monophonic music and even though one could model pitch sequences only even with polyphonic
pieces, it is much more intuitive to do so with melodies. The main purpose of the experiment with
pitch only is to make sure that MahlerNet works as intended and to evaluate the BALSTM decoder

129

http://www.mahlernet.se

130 5 RESULTS

against the regular RNN decoder. First, short runs with basic setups are used to determine a single
BALSTM setup as well as a plain RNN decoder setup, which are then used in more elaborate tests
with scheduled sampling and eventually with context.

Dataset samples max seq. length avg. seq. length
ESSEN 116046 15 3.67
SESSION 1409937 24 6.03

Table 5.2: Information about the datasets used in experiment 1.

5.1.1 Short Runs (VAE Only)
Four regular RNN decoders were tried against four BALSTM decoders. The optimizers Adam and
RMSProp were used as they had proven promising during prototyping and both LSTM units and
GRU units were tested. Each model used a batch size of 256 and was run for 6 epochs on both the
SESSION and the ESSEN datasets, the former resulting in 33048 gradient updates and 2724 for
the latter. All data was used for training and the concept of overfitting was ignored, both due to
the nature of a sequence to sequence model with no desire to generalize and also to the early phase
of the experiments where confirmed overfitting is desirable and confirms the models expressibility
and correctness of programming.

LOSS ACC. DIST.

0.4

0.5

0.6

0.7

0.8

0.9

1

LOSS ACC. DIST.

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

RNN w. LSTM RNN w. GRU BALSTM w. LSTM BALSTM w. GRU

Figure 5.1: Comparison between an RNN decoder and a BALSTM decoder. Accuracy
is measured on training set with teacher forcing and distance is the average number of
classes away from the ground truth on each time step. The left plot is for the SESSION
dataset and the right for the ESSEN dataset.

The diagrams show the best given setup (that is, the best result from using Adam and RMSProp
with the setup in question) for the SESSION dataset to the left, and the ESSEN dataset to the
right. Worth to point out is that the ESSEN dataset is much smaller so the number of gradient

5 RESULTS 131

updates were much lower in that case. From the diagrams, it can be noticed that the GRU units
perform better in general and that the RNN and BALSTM decoders are similar in performance,
with the exception that the BALSTM decoder tends to be slightly farther off when it makes a bad
prediction.

5.1.2 Long Runs (VAE Only)
Picking the best RNN and BALSTM setups from the last section, each model was tried on the
same datasets resulting in 12 epochs for the SESSION dataset (66096 steps) and 36 for the ESSEN
dataset (16344 steps). All the best models use GRU units and in all cases except one, they also
use the RMSProp optimizer. The exception is the BALSTM for the SESSION dataset that uses
Adam. A third setup with the RNN decoder using scheduled sampling with an inverse sigmoid
schedule and a rate of 1000 was also employed now. The schedule is the same as is used in the
MusicVAE. The batch size of 256 from last section is still in use and for the same reasons as earlier
declared, all data was used for training and overfitting was ignored.

RNN RNN (SS) BALSTM
0

10

20

30

40

50

60

70

80

90

100
%

RNN RNN (SS) BALSTM
0

10

20

30

40

50

60

70

80

90

100
%

acc. (training) acc. (reconstr. w. tf) acc. (reconstr. w/o tf

Figure 5.2: Comparison in reconstruction ability between an RNN decoders with and
without scheduled sampling and a BALSTM decoder. The left plot is for the SESSION
dataset and the right for the ESSEN dataset.

Accuracy was measured with respect to the length of the target sequences and thus, if, without
teacher forcing, models generated longer sequences than the target sequence, only the first appli-
cable output tokens were taken into account. Conversely, if the output sequence was shorter, all
the remaining tokens in the target sequence were assumed to be bad predictions and contribute
negatively to the accuracy statistics. Reconstruction outside of training was measured on 200 000
samples from the SESSION dataset which consists of 1409937 samples and on the full dataset for
ESSEN dataset consisting of 116046 training samples.

132 5 RESULTS

5.1.2.1 BALSTM Transpositional Invariance

decoder w. tf w/o tf
RNN 87.53% 73.82%
BALSTM 86.73% 70.20%

Table 5.3: Reconstruction accuracy on
a transposed version of the SESSION
dataset with and without teacher forc-
ing.

The SESSION dataset was transposed six steps
up and both the BALSTM and RNN de-
coder from last section was used to reconstruct
200000 samples from the full set of 1409937
samples.

5.1.2.2 VAE Latent Space

Example 5.1: Samples 1-10, 1-11, 1-12,
1-13, 1-14 and 1-15. Sampled bars from
MahlerNet with RNN decoder, RNN de-
coder trained with scheduled sampling
and BALSTM decoder, first three with
models trained on the SESSION dataset
and then the bottom three with models
trained on the ESSEN dataset

The surface of the latent space on the mod-
els from the previous sections were explored
by means of sampling and interpolations. 1-
bar random samples were drawn from the three
previous models for both the SESSION and the
ESSEN datasets. Interpolations were done with
SLERP, as proposed in MusicVAE, meaning
that spherical interpolation were used instead
of linear. Interpolations were done in 10 steps
which results in a total of 11 steps including
the start point. Examples show 13 bars where
the first and the last bars are the original input
bars, simply copied in, that are interpolated be-
tween. Since no duration or offset is modelled
at this point, a static value was chosen for these
properties (eighth note for both) and the model
then yielded as many predictions as necessary
to output a full bar.

5 RESULTS 133

Example 5.2: Interpolations: top shows interpolation (sample 1-1) between bars 13 and 17 in
sessiontune6 from the SESSION dataset using an RNN decoder, then in the middle, an interpolation
(sample 1-4) between bars 1 and 4 in sessiontune14425 from SESSION dataset as well by an RNN
decoder trained with scheduled sampling. At the bottom, an interpolation (sample 1-9) between bars
2 and 7 in sverige03 from the ESSEN dataset by a BALSTM decoder. RNN decoder trained with
scheduled sampling and at the bottom a BALSTM decoder.

5.1.3 Long Runs (VAE and Context)
The same best-performing RNN and BALSTM models from the last section were now tested with
the context conditioning included. Batch size has now been reduced to 128 due to the resource-
heavy nature of the BALSTM where each original sequence is in reality internally divided into 96
sequences (one per pitch modelled), increasing the batch size with a factor of 96. A validation set
of 10% of the training data is now used since there is a desire for the model to generalize given
some contextual input. Preliminary results indicate that the models don’t overfit using the current
setups which is why dropout has been left out in this experiment too.

RNN RNN (SS) BALSTM
0

20

40

60

80

100
%

RNN RNN (SS) BALSTM
0

20

40

60

80

100
%

acc. (training) acc. (reconstr. w. tf) acc. (reconstr. w/o tf

Figure 5.3: Comparison in reconstruction ability between RNN decoders with and without
scheduled sampling and a BALSTM decoder. All models use a context that conditions the
decoder VAE. The left plot is for the SESSION dataset and the right for the ESSEN dataset.

134 5 RESULTS

Next, 10-bar sequences were sampled from both the models with and without contextual input for
comparison. For models without contextual input, this just amounts to repeated random sampling
whereas for models with context input, the last sampled bar of music was fed as context for the
next bar to predict, starting with the START token only in the context for the first bar. For the
SESSION dataset, the first bar of sessiontune0 was used for seeding whereas in the case of the
ESSEN dataset, the first bar of sverige06 was used. Both bars in original appearance is shown
below.

Example 5.3: The seeds used to yield a first-iteration latent vector. To the left, the opening
bar of sessiontune0 from the SESSION dataset and to the right, the opening bar of sverige06
from the ESSEN dataset.

 3 3
3

3

3

3

3

3

3

3

33

3 3 3

3 3
3

3 3

3 3

3

3

3

3

3

3

3

3

 3

3

3 3

3 3

3 3

3

3 3

3 3

3

3

3 3

3 3

3 3

3 3

3 3

3 33

3

3

5 RESULTS 135

Example 5.4: 10-bar samples: top shows two 10-bar samples (samples 1-17 and 1-22) seeded with
the first bar of sessiontune0 from the SESSION dataset. The first sample is done with a model
that doesn’t use context with an RNN decoder trained with scheduled sampling. Its counterpart is
sampled in the same way but from a model trained with context and a regular RNN decoder, using
a context with only the START token initially. The bottom two examples (samples 1-19 and 1-27)
are generated in the same way but from the opening bar of sverige06 from the ESSEN dataset. The
model without contextual conditioning here uses an RNN decoder whereas the sample with context
is produced with a BALSTM decoder.

5.2 Experiment 2: Modelling All Properties
After having tested MahlerNet on pitch only, all modelled aspects were now included, modelling
offset to previous event, event duration, event pitch and event instrument for every time step. A
few changes were made to the initial basic model and inspired by the MusicVAE; the regularization
by means of VAE loss was weakened to allow the model to yield better reconstructions at the price
of a slightly less organized latent space. The parameters used were taken from MusicVAE in their
initial experiments where both the free bits method as well as the β-VAE was used. The number of
free bits allowed were 48 and the β parameter was initially set to 0.0 and growing slowly to reach
its maximum value of 0.2 asymptotically as the number of global steps goes towards infinity. In
reality, this yield an effective β of 0.08 at 50000 steps and 0.1148 at 100000 steps.

Decoder Encoder VAE Decoder Learning rate
RNN 2*512 256 2*512 0.001
BALSTM 2*256 256 2*256 0.001

Table 5.4: Basic setup for experiment 2.

For this experiment, three new datasets were used, namely three of the well-known baseline datasets
often used.

Dataset samples max seq. length avg. seq. length musical domain
PIANOMIDI 47544 116 14.16 polyphonic
NOTTINGHAM 38339 21 8.12 homophonic
MUSEDATA 37006 158 26.25 polyphonic

Table 5.5: Information about the datasets used in experiment 2.

All of these datasets except MUSEDATA are modelled using a single or very few instruments.
NOTTINGHAM contains mostly melody over a chordal background.

136 5 RESULTS

5.2.1 Short Runs (VAE Only)

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

lo
ss

RNN w. LSTM and Adam RNN w. LSTM and RMSProp
RNN w. GRU and Adam RNN w. GRU and RMSProp
BALSTM w. LSTM and Adam BALSTM w. LSTM and RMSProp
BALSTM w. GRU and Adam BALSTM w. GRU and RMSProp

50

100

%

50

100

%

0

50

100

%

PIANOMIDI NOTTINGHAM MUSEDATA
50

100

%

Figure 5.4: Comparison between RNN decoder and BALSTM decoder with different settings. Met-
rics are measured on full training set. Top shows loss and then teacher-forced reconstruction preci-
sion for offset, duration, pitch and instrument. Training lasted for 10 epochs for all RNN models.
For the BALSTM corresponding value is 4 epochs. Values should not be compared between RNN
and BALSTM due to differences in the training runs.

5 RESULTS 137

5.2.2 Improving the Results
The best setups from the short runs are now tested with four types of improvements: three condi-
tionings during decoding and one reduction technique.

5.2.2.1 Conditioning on Metric Structure

The MUSEDATA and PIANOMIDI datasets are now used along with additional metric structure
that mark every eighth note downbeats in an 8-class vector (corresponding to all the eighth notes
in a 4/4 bar). The best setups from the previous section were used with the same settings apart
from the extra beats vector.

The loss is hardly affected at all by the addition of beats but it is possible to see a slight improvement
in prediction of offset and duration at times and unfortunately also a deterioration in pitch and
instrument.

RNN (GRU) w. RMSProp BALSTM (LSTM) w. RMSProp

PIANOMIDI MUSEDATA PIANOMIDI MUSEDATA

offset duration duration pitch duration pitch instrument

Default 91.88% 86.74% 78.15% 46.35% 80.87% 52.28% 79.11%
Beats 93.01% 88.24% 79.73% 44.73% 81.74% 51.57% 78.10%

Table 5.6: Effects of adding a vector with beats conditioning on metric structure.

5.2.2.2 Improving Pitch Predictions

Pitches occurring at the same time step are ordered from low to high (since it is more reasonable
to condition higher pitches on lower than vice versa) by the preprocessor. MUSEDATA and
PIANOMIDI are now tested with the best setups from the short runs but with the same step
reduction feature activated. This feature masks out the logits of pitches lower than the previous one
modelled, should the new event have an offset of zero, so that the pitches are started simultaneously.
The other way, to improve pitch by conditioning on the currently sounding pitches (if any) is also
tried out.

RNN (GRU) w. RMSProp BALSTM (LSTM) w. RMSProp

PIANOMIDI MUSEDATA PIANOMIDI MUSEDATA

Default 40.59% 44.83% 46.35% 52.28%
Same step reduction 40.08% 41.27% 45.13% 52.84%
Active pitches 41.22% 45.76% 45.93% 53.06%

Table 5.7: The effects of conditioning on currently sounding pitches as well as reducing
the available pitches whenever offset from the previous event is zero.

138 5 RESULTS

5.2.2.3 Conditioning on Active Instrument

This section uses a conditioning on active instruments instead of active pitches, as was the feature
to evaluate in the last subsection. Also, only MUSEDATA has been evaluated since PIANOMIDI
only contains piano music.

RNN (GRU) w. RMSProp BALSTM (LSTM) w. RMSProp

Default 76.11% 79.11%
Active instruments 77.45% 80.37%

Table 5.8: Teacher-forced reconstruction accuracy for instrument when modelling all prop-
erties and with and without active instrument conditioning.

5.2.2.4 The New Default

The techniques previously presented that had a neutral or positive impact on the outcome was
incorporated in the default for the rest of the experiments. This means that all the conditionings
were kept whereas the reduction technique on pitch was removed. Below is presented the impact
of employing all three conditionings at the same time.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

2.44
2.282.46

2.47

3.05
2.87

3.31
3.10

epochs

loss

RNN (PIANOMIDI)
RNN w. cond. (PIANOMIDI)
RNN (MUSEDATA)
RNN w. cond. (MUSEDATA)
BALSTM (PIANOMIDI)
BALSTM w. cond. (PIANOMIDI)
BALSTM (MUSEDATA)
BALSTM w. cond. (MUSEDATA)

Figure 5.5: All setups except for one with the BALSTM benefits from decoding with
additional conditionings on metric structure, active pitches and active instruments.

5 RESULTS 139

RNN (GRU) w. RMSProp BALSTM (LSTM) w. RMSProp

PIANOMIDI MUSEDATA PIANOMIDI MUSEDATA

Offset 91.88% / 93.82% 91.28% / 93.18% 95.38% / 95.20% 92.82% / 93.98%
Duration 86.74% / 88.45% 78.15% / 79.96% 91.12% / 91.58% 80.87% / 82.56%
Pitch 40.59% / 43.00% 44.83% / 46.24% 46.35% / 45.87% 52.28% / 53.84%
Instrument 100.00% 76.11% / 77.56% 100.00% 79.11% / 80.60%

Table 5.9: Results from supplying three conditionings during decoding.

5.2.3 Long Runs (VAE Only)
Longer runs with the best setups with conditionings were now undertaken. Since convergence was
slow, batch normalization was added before the activation function of all fully-connected layers in
the network, except in those belonging to the VAE, including the output layers. In conjunction to
this, the activation function was switched to leaky ReLU instead of tanh and both the BALSTM and
RNN were assigned LSTM cells that now outperformed the GRUs. Recurrent batch normalization
was attempted as well but yielded less improvement in performance.

50

100
%

RNN w. tf RNN w/o tf
RNN w. SS1 and tf RNN w. SS1 and w/o tf
RNN w. SS2 and tf RNN w. SS2 and w/o tf
BALSTM w. tf BALSTM w/o tf

50

100

OFFSET DURATION PITCH INSTRUMENT

50

100

Figure 5.6: Pairwise comparisons between teacher-forced and non-teacher-forced reconstruction of
the entire datasets. From top to bottom, reconstruction percentages with respect to modelled prop-
erties for PIANOMIDI, NOTTINGHAM and MUSEDATA datasets. PIANOMIDI and MUSE-
DATA were tested with two different settings for scheduled sampling (linear schedule with 0.00001
and 0.000025 decay) whereas NOTTINGHAM only used one setting (inverse sigmoid schedule with
rates 1000 and 1500). RNN training lasted for 50 epochs for PIANOMIDI and MUSEDATA and
30 epochs for NOTTINGHAM. With the BALSTM, training lasted for 40 epochs for MUSEDATA,
30 epochs for PIANOMIDI and 24 epochs for NOTTINGHAM.

140 5 RESULTS

5.2.3.1 BALSTM Transpositional Invariance

decoder w. tf w/o tf
RNN 59.54% 37.81%
BALSTM 73.83% 31.04%

Table 5.10: Reconstruction accuracy on
a transposed version of the PIANO-
MIDI dataset with and without teacher
forcing.

The PIANOMIDI dataset was transposed four
steps down and both the BALSTM and RNN
decoder from last section was used to recon-
struct the full set of 47544 samples. Given the
unanimous results with respect to the BAL-
STM, it was dropped in the parts left of the
experiments.

5.2.3.2 VAE Latent Space

Interpolations were done with models trained on the PIANOMIDI and MUSEDATA datasets.
No samples from MUSEDATA are shown due to their size since most often, several instruments
are included in the generated music. They can however be heard at the MahlerNet website at
https://www.mahlernet.se.

https://www.mahlernet.se

5 RESULTS 141

Example 5.5: Interpolations: top shows interpolation (sample 2-1) between bars 136 and 203 in
mz_333_1 from the PIANOMIDI dataset using an RNN decoder and then below, an interpolation
(sample 2-6) between bars 105 and 110 in pathetique_1 from the PIANOMIDI dataset as well but
this time by an RNN decoder trained with scheduled sampling.

Next, as in the previous experiment, random samples were drawn from the models.

142 5 RESULTS

Example 5.6: Sampled bars from MahlerNet with an RNN decoder on top (samples 2-3 and 2-
13), then an RNN decoder trained with scheduled sampling (samples 2-7 and 2-15) and at the
bottom row, sample from a BALSTM decoder (sample 2-10). The left column is from models
trained on PIANOMIDI and the right from models trained on MUSEDATA. The BALSTM
sample is only one to the number and from a model trained on PIANOMIDI since the sample
from the model trained on MUSEDATA was too big to fit here.

As a follow-up on the sampled bars, a 10-bar sample (and since there is no context, this means ten
sequential but uncorrelated samples) was drawn from the model with an RNN decoder trained on
PIANOMIDI and compared to a 10-bar sample drawn from a new model trained on PIANOMIDI
with the same settings as the former, but with the optional use of β-VAE and the free bits tech-
nique turned off. This means that the latter model employs the default VAE loss as was done in
experiment 1.

	=	148

5 RESULTS 143

3 3

Example 5.7: At the top, a 10-bar sample (sample 2-4) drawn from a model with RNN decoder
and trained on PIANOMIDI with 48 free bits and β annealing in the VAE loss. At the bottom
(sample 2-11), a model with the same settings but with free bits set to 0 and β-annealing
entirely turned off. Since no context conditioning occurs, there is no expectation on the bars
to be correlated and they are sampled one and one and concatenated afterwards.

5.2.4 Long Runs (VAE and Context)
Long runs using context were now performed. Due to the BALSTM taking longer to train and
performing bad, it was excluded from further experiments. Furthermore, the β-VAE and free bits
technique were removed in the VAE loss and dropout of 35% was introduced in every layer (resulting
in the processing order weight multiplication ⇒ batch normalization ⇒ activation function ⇒
dropout) of the network except for in the input and output layers. Models are only trained on
PIANOMIDI and MUSEDATA and only two versions exist for each: with and without scheduled
sampling. Models trained until the loss of the validation set started to show tendencies to increase,
after which the saved model from the last epoch before this was used for inference. This resulted
in models training on the PIANOMIDI dataset for 15 epochs for the regular model and 22 epochs
for the model trained with scheduled sampling. Corresponding training lengths for MUSEDATA
was 21 and 25 epochs.

144 5 RESULTS

Hammondorgel

Viola

Violin

Violoncell

Violiner

Blåsinstrument

Hmorg.

Vln.

Vla.

Vc.

Vlns.

Bl.

Example 5.8: 10-bar random sample (sample 2-56) drawn from a model conditioned on context
with RNN decoder and trained on MUSEDATA with standard VAE loss. The sample was
randomly generated with an initial context with a START token only and sampled latent vectors
all along, using softmax temperatures 0.7, 0.7, 0.6 and 0.7 for offset, duration, pitch and
instrument.

5 RESULTS 145

Example 5.9: 10-bar samples (samples 2-18 and 2-32) drawn from models conditioned on
context with RNN decoder and trained on PIANOMIDI with standard VAE loss. The model
producing the bottom sample was also trained with scheduled sampling. For top sample, the
model was seeded with bars 1 and 2 for context and initial input from MIDI file elise, using
softmax temperatures 0.9, 0.9, 0.7 and 0.5 for offset, duration, pitch and instrument. The
model producing the bottom sample was seeded with bars 1 and 2 from chpn_op10_e01 with
all softmax temperatures set to 1.0.

146 5 RESULTS

3 3

3 3
3

3

3

3

3

3

Example 5.10: 10-bar samples (samples 2-26 and 2-39) drawn models conditioned on context
with RNN decoder and trained on PIANOMIDI with standard VAE loss. The model producing
the bottom sample was also trained with scheduled sampling.

Both seeded and random samples were taken. A few are presented above but the reader is urged
to listen to output at the MahlerNet website at http://www.mahlernet.se instead, due to lack of
space in this writing.

http://www.mahlernet.se

5 RESULTS 147

5.3 Experiment 3: Modelling Gustav Mahler
In the final experiment, essentially the same settings from the last portion of experiment 2 was
used. Only two long runs were made: one without context and one with.

Decoder Encoder VAE Decoder Learning rate Dropout
RNN 2*512 256 2*512 0.001 35%

Table 5.11: Basic setup for experiment 3.

The MAHLER dataset was collected from three Internet sources for the purpose of this work and
contains all of Mahler’s symphonies except for a few movements that was not found.

Dataset samples max seq. length avg. seq. length musical domain
MAHLER 17450 303 29.01 polyphonic

Table 5.12: Information about the dataset used in experiment 3.

5.3.1 Long Runs (VAE Only)
As in experiment 2, the models were trained for 50 epochs using one model with an RNN decoder
and one model with an RNN decoder trained with scheduled sampling.

OFFSET DURATION PITCH INSTRUMENT
0

50

100
%

RNN w. tf RNN w/o tf
RNN w. SS and tf RNN w. SS and w/o tf

Figure 5.7: Pairwise comparisons between teacher-forced and non-teacher-forced reconstruction of
the entire MAHLER set. The model trained with scheduled sampling had a linear schedule with
0.00001 decay. Training lasted for 50 epochs.

148 5 RESULTS

5.3.1.1 VAE Latent Space

As usual, interpolations were done with input bars from the MAHLER dataset. There is not room
to show results here but they can be heard at the MahlerNet website http://www.mahlernet.se.
In general, interpolations were not very smooth for bars with a lot of events but bars with less
events were successful.

Electric	Guitar

Strings

Horn	in	F

Example 5.11: 10-step interpolation (sample 3-1) (resulting in 13 bars including copied in end-
points) between bars 9 and 10 in Mahlsy54 from the MAHLER dataset. Interpolation was done
by a model using an RNN decoder and trained for 50 epochs with batch normalization and without
scheduled sampling. The number of events in the bars are few and the interpolation is smooth
between endpoints and endpoints are correctly reconstructed.

5.3.2 Long Runs (VAE and Context)
In the long runs, the same approach as for the long runs with conditioning in experiment 2 was
used. The model trained without scheduled sampling was optimal at 31 epochs whereas using
a linear scheme for schedule sampling with rate 0.000010, the optimal model had trained for 33
epochs. Both batch normalization and a dropout of 35% were used for both models.

Listening samples en masse exist on the MahlerNet website http://www.mahlernet.se. Due to
the samples being large, they do not fit in this report. All samples were generated with softmax
temperatures between 0.5 and 0.8 for all properties.

http://www.mahlernet.se
http://www.mahlernet.se

5 RESULTS 149

Bassoon

Timpani

Contrabass

Horn	in	F

Trombone

Electric	Guitar

Bsn.

Bass	Clarinet

Piano

Timp.

Cb.

Tbn.

B.	Cl.

Pno.

Example 5.12: 10-bar random sample (sample 3-45) from a model using an RNN decoder and
trained with scheduled sampling using a linear schedule with a 0.00001 linear coefficient. The
model was seeded with bar 553 as initial context and 554 as initial latent sample from Mahler61.
The sample is not very interesting but since, except for the first bar, the content is sampled from
the latent space, it shows that the context manages to create a long-term structure in terms of
instruments used as well as offsets, durations and pitch content.

6 DISCUSSION

6.1 Implementation

6.1.1 MIDI
Someone who hasn’t worked in detail with the MIDI format might believe that it lies closer to
written than sounding music and that a conversion from MIDI to a data representation of the
corresponding symbolic music is straightforward. It turns out that this is, by far, not the case.
MIDI is in fact a very rich data representation that can express music in much more detail than
can written music, and thus it is almost as if it was developed with sounding music in mind rather
than written. For example, dynamics in MIDI is expressed as a number between 0 and 128 which
is richer than the classical terms most often used for written music. Furthermore, the default MIDI
setting uses 96 ticks for a quarter beat which effectively allows for a quarter to be divided into 96
parts whereas it is very rare to see written music with anything smaller than 32nd notes, which
are also rare. MIDI thus lends itself to capturing the details of sounding music and in general, it
seems like the format has been used more with this aspect in mind rather than as an alternative
format for written music.

Another important aspect is how MIDI files are created and with what intention. Given a sequencer
or music writing software capable of generating MIDI files, there is no silent rule saying that
generated MIDI must correspond exactly to the written music and so, the software could potentially
create the file with the ambition that it should sound good and therefore use heuristics to add
artifacts to the output MIDI so that it sounds more like music played by humans. When MIDI
files are recorded by humans on MIDI instruments, the generated music is per definition a capture
of sounding music rather than written unless some heavy quantization has been used. And what
stops the human performer from adding things that make the music sound more like it would have
sounded if it would have been played by a band or an orchestra, at the cost of bringing it even
further away from its written counterpart?

It very soon becomes obvious when processing any MIDI file with the slightest complexity that
a whole arsenal of tricks and cheats are used to make the listening experience more enjoyable,
sacrificing the symbolic precision of the very same piece. Examples of tricks are doubling the
length of all notes in a portion of the music to illustrate a halved tempo (instead of actually
changing the tempo), spelling out tremolos and trills in a way that breaks how the same passage is
notated in the score and doubling voices in more MIDI instruments than what is done in the original

151

152 6 DISCUSSION

manuscript. Any project using MIDI to create a representation of the corresponding written music
(MIDI has also been used to model sounding music (Eppe et al., 2018)) must then make use of
a powerful preprocessor that creates a data representation of the music that is meaningful, correct
and with enough of the original retained and as little as possible of the added artifacts kept. The
MIDI format is thus not ideal for modelling symbolic written music and it results in an unnaturally
large responsibility placed on the MIDI preprocessor.

6.1.2 Architecture
The conditions listed in section 1.2 were all fulfilled with the following comments:

• Condition C.2: 23 instruments were used in this work since some concrete number had to be
decided upon. However, this number is arbitrary and the design is by no means restricted to
some special number, hence condition C.2 is fulfilled to the desired extent.

• Condition C.3: In this work, the context conditioning and a latent vector calculated from
an input bar (as opposed to randomized) act as the kind of the seeding and conditioning as
condition C.3 refers to. Thus, this condition is fulfilled but more importantly, MahlerNet has
an adaptable design which can easily be extended to allow further arbitrary conditioning, for
example expressing musical style or time signature, if wanted.

• Condition C.6: As mentioned in section 4, even though minimal assumptions have been placed
on the input music, there are some assumptions since we are, in fact, targeting Western music.
This condition is thus fulfilled.

The architecture was repeatedly developed starting out with neither scheduled sampling nor batch
normalization or dropout implemented. Early on all durations were modelled with a distributed
representation where only 11 out of the basic set of durations were used as features. No matter
how intuitively appealing and efficient this may seem, switching to a one-hot representation with
60 classes and softmax instead of sigmoid as output function immediately lead to an improvement
in performance. One reason for this might be that when durations are modelled in a distributed
way, the zero duration is modelled only as the lack of all other durations whereas when using a
local representation, this duration is actively represented by a class. Perhaps this has a positive
impact on performance and with this duration explicitly modelled in the distributed representation
as well, this representation would work better. Nonetheless, this would imply other oddities in the
representation that would have to be taken care of (for example, how to interpret an active zero
duration when other duration classes are active as well).

From a musical point of view, the order of conditioning among the modelled properties may seem
somewhat arbitrary, but some rule of guidance can be found. First of all, predicting instrument
should be conditioned on pitch since the choice of instrument is highly dependent on in which
range the pitch to play lies. Pitch, in turn, depends on offset to previous event since the closer to

6 DISCUSSION 153

the previous event, the less likely it is idiomatically that the new pitch is far away from the last.
When it comes to pitch and duration, conditioning can go both ways; one might argue that given
a long duration, it is more likely that the pitch is in the key of the piece and vice versa and in the
early versions of MahlerNet, pitch was modelled conditioned only on offset after which duration
and instrument was predicted (what instrument to pick depends also on the duration since some
instruments have a harder time playing short notes than others and vice versa). One way to go
would be to model pitch and duration separately, but given the arguments above, the question
is only about in what way the conditioning should go, not as to if there is a conditioning in the
first place. Therefore, any conditioning is better than none. Nevertheless, keeping in mind that
the order of conditioning is offset to duration to pitch in BachProp, the modelling order applied
in MahlerNet was switched in later versions to use the same order with instrument predicted last.
One other advantage of this was also that an empty time step, used to progress time, could now
be signalled by using the zero duration, which would otherwise be redundant. With the zero step
as a duration feature, both offset and duration could be modelled more similarly (instead of taking
special care of the zero duration for the duration property) and there was no need for an extra "no
pitch" class that would break the BALSTM pitch convolutions in terms of note vicinity.

Some of the arguments above do not necessarily hold true for the data representation chosen. For
example, a short offset makes a short leap more likely only if the previous pitch was in the same
melody line as the next, something that is not necessarily true in a representation where all vertical
events are modelled sequentially. Thus, the last event may be from another melody line and then,
a short offset does not mean anything.

6.2 Experiments
During training, an initial indication sought after was a model’s capability to overfit. When not
conditioning on context, the notion of overfitting becomes somewhat obscure and therefore, no
specific attention was paid to overfitting; the models were trained for as long as possible to be
able to represent the music they were trained on to the highest degree possible. After training,
reconstructing the training set with the same accuracy as was measured during training, but now
with the inference pipeline as opposed to the training pipeline using manual teacher forcing, was also
important and indicative of whether the implementation was correct. This measure has therefore
been used several times to illustrate this fact.

154 6 DISCUSSION

6.2.1 Experiment 1
Pitch was modelled using large datasets with sequences of short length. It is possible to see a
clear indication of which model is worth to continue to explore in the short runs and for the RNN
decoder, this turned out to be a model using GRU units with the RMSProp optimizer for both
datasets. For the BALSTM, the GRU units were also winning but with the Adam optimizer for
the SESSION dataset and RMSProp for the ESSEN dataset. For the BALSTM, it is important
to remember that since each original sequence is divided into 96 sequences for single pitches, the
underlying modelling RNN trains on much more data than does the regular RNN decoder.

When testing the winning models on long runs, it is obvious that the inference pipeline works as
intended since the teacher-forced reconstruction percentages are about the same as the training
accuracy for all models. However, it is also clear from this run that the use of scheduled sampling
results in a higher full reconstruction accuracy, especially for the SESSION dataset. Here an inverse
sigmoid rate of 1000 was used which is a sampling schedule that drastically increases the chance
of sampling from the model predictions instead of the targets from the 5000th step and on.

The preliminary tests of the BALSTM transpositional invariance property revealed that the RNN
decoder performed better with a transposed dataset, both with and without teacher forcing. Rea-
sons for this might be that the context in which the BALSTM-like component is deployed differs
significantly from where it is originally deployed and because of this, the results might suffer. First
of all, the original BALSTM processes all events from the previous moment in time simultaneously
which MahlerNet doesn’t. A convolution over several pitches from the previous moment in time
(which in the original BALSTM is the same as the previous time step whereas in MahlerNet, the
previous moment in time can be spread out over multiple time steps in the model) is probably
more indicative of whether a specific note should be turned on or not than a convolution over a
range where only one pitch is turned on, which is the unavoidable result from modelling polyphony
sequentially. This means that every RNN instance modelling a pitch has very little information
about pitch context which might result in some kind of transpositional pitch invariance but a very
suggestive one in an otherwise weak model. Also different from the original BALSTM is that
the output of each BALSTM instance is concatenated and run through a softmax layer which is
different from the binary output, indicating pitch activation or not for a given instance, in the
original BALSTM. All in all, these changes might have a negative impact on the BALSTM, even
though there was a hope, at this point, that it would perform better when modelling all properties.
Especially so because it would then have access to the active pitches input which, similarly to the
original BALSTM contextual setting, holds multiple simultaneous pitches that are turned on.

In this experiment, the standard VAE loss was used which is sometimes criticized for putting too
much emphasis on a smooth and ordered latent space at the price of reconstruction quality. As
expetced, the pitch experiment shows that the latent space of the VAE is smooth and ordered,
even though some small deviations exist. The endpoints in the interpolations can be analyzed
with respect to key and motives and often, there is a gradual transition from the first key and

6 DISCUSSION 155

direction of motives to the second one and the endpoints are reconstructed with high accuracy.
The BALSTM decoder seems to deliver more "imaginative" solutions, less idiomatic than the RNN
decoders, both with and without scheduled sampling. Random samples from the latent space show
that it is populated and forms a multidimensional surface where all sampled points correspond to
music similar to encountered samples in the training data.

The addition of context conditioning in experiment 1 does not result in any wonders but it is clear
that more convincing music is created from models conditioned on context compared to random
concatenated samples which indicates that the context conditioning has a positive impact. Most
of the time, the music stays somewhat in key with context conditioning which is obviously not the
case without it. Melody lines are smoother with less large leaps between bars and in some places,
motives are regurgitated in neighbouring bars.

6.2.2 Experiment 2
In experiment 2, already after the short runs, it is possible to see more diverse results than in
experiment 1. First of all, the datasets used a fairly small but with long sequences and the
performance of the models vary a lot over the datasets. The MUSEDATA dataset seems to be the
hardest to model after which follows PIANOMIDI. Common for these two sets is that they contain
longer sequences than other datasets from both experiments. Nevertheless, obvious indications
regarding which models perform best can be spotted and yet again, RMSProp as an optimizer
proves to be best. Apart from that, the RNN decoder uses GRU units whereas the BALSTM
decoder uses LSTM units.

Before proceeding, some additional features of MahlerNet were tried out to decide on which of these
to use for the remaining experiments. As expected, most of the features turned out to have an
almost unanimous positive impact on performance, with one exception. The reduction of pitches
to choose from as a result of zero offsets resulted in worse performance even though removing
some of the possibly wrong predictions, in theory, shouldn’t have anything but either a positive
or no impact, yet here it has a negative impact. The reason for this might be that the weights
connected to the masked out pitches get much less training than weights for other pitches and thus
perform worse whenever they are actually used. For example, given a pitch that is masked out by
subtracting 1038 (the value used in the MahlerNet implementation) from its corresponding logit
only receives a very tiny, almost non-existing, gradient update whenever it is lower than the last
pitch when a zero offset has been detected. Over time, this results in much less training for lower
pitches and so they perform worse, lowering the overall performance. If this theory is true, then
the correct way to handle a situation like this one is to mask out logits (or the ensuing softmax
probabilities) only at inference time, and not at all during training, to avoid impeding the learning
process. The same masking out is done for the zero duration which is forbidden whenever offset
is zero but here, it only applies to a single duration class and it is thought to have relatively little
impact on the training. Keeping three out of the four suggested improvements, one must keep in

156 6 DISCUSSION

mind that these can only be used without scheduled sampling, since the input for these properties
assume that the teacher-forced input will contain a certain sequence of events and with schedule
sampling, this sequence is broken, rendering the inputs incorrect. This could be helped by turning
the process of gathering these conditionings into a real-time process in the graph but this has not
been done in the current version of MahlerNet. Thus, in the remaining experiments the scheduled
sampling RNN decoder is not necessarily better than the plain RNN decoder which can make use
of extra conditionings.

When running long runs modelling all properties, a slow learning curve was detected and so batch
normalization was added. The addition of batch normalization changes the playing rules and,
informally, a lot of setups were tested again with the verdict that LSTM units performed better
than GRU units at all times. The new default setup was then to use LSTM units in all recurrent
parts of MahlerNet and batch normalization in all feedforward layers (including the output layers)
before the activation function. Furthermore, the activation function used was switched from tanh to
leaky ReLU and, as indicated in the previous paragraph, extra conditionings with metric structure
(beats), active pitches and instruments were used whenever possible. Even though training is
facilitated by batch normalization, the results from the long runs still show that full reconstruction
without teacher forcing is poor, with a large drop in accuracy for especially pitch. The suspicion
here is that a so called "posterior collapse" takes place; a phenomenon discussed by the originators
of the MusicVAE, among others (Bowman et al., 2015; Roberts et al., 2018; Roberts et al.,
2017). The idea is that the decoder, being a powerful model in itself, learns to, in part, ignore
the latent vector and base its decisions on the teacher-forced input instead. This results in good
performance in training but poor reconstructions without teacher forcing. In this case, the use of
scheduled sampling doesn’t provide a solution either. In the first publication on MusicVAE, it is
discussed how two bars of time slicing on sixteenth notes can be modelled in a flat decoder, but
that for longer sequences, a hierarchical decoder must be used to improve the results (Roberts
et al., 2017). Two bars of time slicing on sixteenth notes is equivalent to 32 events and given
the distribution of sequence lengths in previous datasets compared to the sequence lengths in
PIANOMIDI and MUSEDATA, it is somewhat expected that the threshold where a flat decoder,
according to what is said by the originators of the MusicVAE, starts to degenerate lies somewhere
in between. Thus, it seems that a full-scale solution to this problem must be alleviated by an
architectural change not possible at this moment.

The long runs with VAE only resulted in models that could perform interpolations with varying
results; endpoints with fewer events resulted in great interpolations but whenever the number of
events in the endpoints was increased, the interpolation was less smooth and with only rudimentary
characteristics of endpoints present throughout. The latter is an effect of the previously described
posterior collapse and upon inspection, it is easy to see that the beginning of interpolated bars
starts out well but then looses track. An implication of this is that interpolated bars often have
reasonable bass notes, as these are modelled first in each moment of time, which creates a sense
of a red thread and even though interpolations of endpoints with a large number of events are not

6 DISCUSSION 157

smooth and ordered, the result is often musically interesting and brings about a groove-like feeling.
Perhaps, the rudimentary repetition of the same interpolation sometimes gives the impression of
repeated themes or motives, which is exactly the kind of structure that is hard to achieve. Thus,
the interpolations can sometimes serve as compositions at the same time as it is a way to inspect the
latent space. When random samples are drawn from the trained models, the results are catastrophic
and lack any sense of musicality or musical idiomaticity; the notes are long, start on odd offsets
and lie in extreme ranges. Since the VAE loss was made less significant in experiment 2, using the
free bits and β-VAE techniques as was done in MusicVAE, the suspicion was that this had resulted
in a latent space that was not smooth and that had a lot of unexplored holes which the decoders
did not know what to do with. Running a test on the PIANOMIDI dataset with an RNN decoder
with standard VAE loss confirmed this idea and the model could be seen generating musically
plausible random samples but less impressive interpolations. Alas, in MusicVAE, a lot of focus is
put on interpolations and so, even if the MusicVAE should have a latent space that is not smooth
and does not allow for random samples, this is not a problem for that model. Nonetheless, the
results shows clearly the tradeoff between a structured latent space and reconstruction accuracy
that the originators of the MusicVAE write about. In MahlerNet, random samples drawn from
the latent space is a large part of how the model is to be used and so it cannot be afforded to
sacrifice the structure of the latent space on behalf of reconstruction accuracy; it is better with
inexact but musically plausible reconstructions than gibberish random samples showing no musical
structure whatsoever. Going the middle way and with one part left of experiment 2 and the whole
experiment 3, it was decided that for models without context conditioning, it could be afforded
to have a non-smooth and unpopulated latent space focused to give good interpolations and so
the previously employed settings with β-VAE and free bits were used. On models conditioned on
context however, the standard VAE loss would be employed instead.

Testing the BALSTM transpositional invariance property anew, it could again be seen that an
RNN decoder performed better on a transposed dataset. However, an interesting thing here is that
the BALSTM actually performs better than the RNN decoder when teacher forcing is employed.
This is most likely due to the use of active pitches which creates a context for the BALSTM
more similar to how it is used originally. Nevertheless, as could also be seen in other examples,
the discrepancy between teacher-forced reconstruction and full reconstruction is now larger for
the BALSTM decoder than for the RNN decoder and so full reconstruction is still better with a
standard RNN decoder. At this point, it must be realized that the BALSTM brings nothing to the
table and it was, with good reasons, discarded for further use as a decoder in the remaining parts
of the experiments.

After training with the standard VAE loss and dropout, the resulting models with context condi-
tioning did not reconstruct the training set with high accuracy, but instead short and long samples
drawn from them often showed a high level of musical plausibility. It was apparent that they had
learned basic musical properties from the training set, as opposed to details. In particular, for
both the PIANOMIDI and MUSEDATA training sets, the models trained with scheduled sampling

158 6 DISCUSSION

gave rise to slightly less convincing and more unstructured music. This indicates that the benefit
of the added conditionings with beats and active pitches and instruments outshines the advantage
of scheduled sampling, however, in a non-measurable way. Worth to mention here is also that
there has been voices raised against scheduled sampling without questioning its empirical success
(Huszár, 2015) and it is hard to know whether it is the scheduled sampling mechanism in itself
that results in slightly poorer generated output or if it is the missed-out benefit from the additional
conditionings. As with a lot of neural networks trained on music, long-term consistency is lacking
but on a micro-level the music is full of examples related to the music the networks were trained
on. When sampling from models trained on the MUSEDATA dataset, it is obvious that the set
consists mostly of baroque and classic music with Bach playing a big role. In figure 5.8 for example,
a typical baroque composition with continuo doubled in organ and cello with melody in flute and
violin, sometimes playing together, at other times playing individually, is shown. The network
manages to get a plausible setting of instruments and the level of counterpoint is high. Needless
to say, models trained on the PIANOMIDI dataset almost exclusively chooses piano as instrument
and nothing else. Also models trained on MUSEDATA show the tendency of wanting to stay with
piano only once piano starts to show up in the score. Samples can be heard at the MahlerNet
website at https://www.mahlernet.se but the list of musical qualities that can be found upon
inspection is long:

• Music in the longer samples of 100 bars contains contrasting parts.

• Trumpet and timpani are often added in tutti sections, typical for use of brass and timpani
in the classic era.

• Instruments most often play in their correct ranges.

• Beats 1 and 3 are often emphasized with longer notes and timpani beats, showing some
understanding of meter. In particular, full bar notes are often placed at the first beat of the
bar, no matter the meter which shows an understanding of meter.

• Instruments are doubled in realistic ways for the baroque and classic era.

• Typical instrument groups for baroque and classic music is prevalent with either the chamber
setup or strings, woodwinds and timpani (less common with french horns however).

• Cadenzas and 5-to-1 motion is reoccurring even though to a lower extent than in reality for
music from the baroque and classic era.

• Strings are the motor of the music whereas other instruments has the main focus only peri-
odically and otherwise they contribute with shorter fills here and there.

• It is relatively common that whenever an instrument is activated, it plays a few phrases, not
only contributing with a single sixteenth note and then going silent.

https://www.mahlernet.se

6 DISCUSSION 159

• Triplets are often accompanied by more triplets, thus the models do not change subdivision in
an ad-hoc way. This is also a consequence of the context conditioning successively propagating
the characteristics of previous music, bar by bar.

The context conditioning manages to create a red thread by linking pairs of bars together and
the typical samples contain a continuously, but not rapidly, changing context in terms of register,
active instruments, type of music (contrapuntal or homophonic as in baroque or classic music)
and more. Samples are also diverse and often stay in style. These things clearly indicate that
the context conditioning is used by the decoders and that it manages to create some long-term
structure at certain levels, alas not in the level where clear musical themes are reoccurring, which is
also somewhat expected given the very limited historical scope that it offers. Thus only tendencies
and very high-level features are passed on in the generation of each new unit of music.

6.2.3 Experiment 3
Interpolations in models trained on the MAHLER dataset experience the same tendencies as those
trained on PIANOMIDI and MUSEDATA, albeit with an even less smooth transition between
end points in some cases since the MAHLER set has even longer sequences than the previous two
datasets.

Seeded and unseeded random samples from models trained on the MAHLER dataset show widely
different characteristics than the samples from experiment 2. Models trained on MUSEDATA
had a tendency to go in to one of two modes: either a chamber setting with high polyphony or
a homophonic setting with a typical classic sound. Noteworthy in experiment 3 is that no such
chamber setting exists any longer and in general, instruments used are more romantic and the
music is more dissonant. For example, tuba, trombone and trumpet rarely occurred in samples
from experiment 2 but are frequently included in experiment 3. Tutti sections (where all or almost
all instruments in the orchestra are playing) are commonly sampled which might be seen as a failure
of the network. However, in reality, it is hard to know whether MahlerNet or Mahler himself is to
blame; there is a reason to why some people think that the magnificent composer is too noisy as he
often uses the full capacity of the orchestra. Other traits of romantic Mahler music, such as high
strings, lines doubled in several woodwinds and mediant relationships between subsequent chords
can also be spotted. Compared to experiment 2, music now proceeds in more unexpected directions
harmonically (but typical for romantic music) and long sections dwelling on some (often dominant)
chord with suspensions and temporary resolutions of dissonances are often heard. Sometimes, as
stated by the originators of BachBot as well, pieces entirely generated by the model (no seed or
in the case of BachBot, no initial voices to harmonize) sound better, perhaps because they lack
the sometimes abrupt change of style when the seed transitions into MahlerNet’s own composition.
Because the harmonic turns are often unexpected, as is the case in a lot of romantic music, the
samples may sound less pleasing than the samples from experiment 2. One view on this is that
romantic music, especially that of Mahler, hinges more on themes and motives to tie together the

160 6 DISCUSSION

music whereas both classic and baroque music are built on a somewhat sound harmonic structure.
If this is the case, MahlerNet disfavours romantic music since it currently doesn’t handle long-term
structure in terms of motives and themes well enough. As in experiment 2, the model trained with
scheduled sampling generates slightly less interesting and ordered music.

Revisiting the notion of posterior collapse and the MIDI format, it is common that tremolos or
trills in strings create extremely long sequences of note repetitions in the MIDI files which of course
disturbs the learning process and makes the sequences longer than they need to be, thus worsening
the aspect of posterior collapse. In the written music however, a long tremolo or trill is usually
written as a single note with an additional symbol.

6.3 On the Art of Training Neural Networks
It has already been mentioned previously that using one’s intuition when constructing neural
networks and the representations that they should work on might be a mistake, since it is hard to
see the data from the perspective of the network and in some cases a representation that seems
more complicated to a human, is actually easier to learn for a network. One such example was
the question of using time slicing or not where time slicing seems to offer a simple scheme with
a great built-in overview. Nonetheless, using less intuitive representations has often resulted in
better results and this theme reappears in different areas with neural networks.

One such example is the latent space of the VAE. By measuring reconstruction capacity, we get
an indication of what the model can accomplish, but it turns out that this is not always related
to the landscape of the latent space, which becomes obvious when doing interpolations. First of
all, evidently, even though batch normalization speeds up training it does not necessarily result
in better full reconstruction capacity. In the diagram further down, all models perform similarly
when reconstruction is done with teacher forcing, but without teacher forcing, there is quite a
difference. More importantly, how does batch normalization affect the latent space? Even though
there are models both with and without batch normalization among the best performers at full
reconstruction in the diagram, the one thing that unites all models without batch normalization is
that they, without exception, perform better interpolations in the latent space, posterior collapse
aside.

6 DISCUSSION 161

Contrabass

Strings

Example 6.1: 10-step interpolation (sample 4-1) between similar bars (1 and 5) in Mahler61 from
the MAHLER dataset. Model was trained with a VAE loss with 48 free bits and with single layers
of 256 units in input encoder and decoder and a 128 unit large latent space.

OFFSET DURATION PITCH INSTRUMENT
0

10

20

30

40

50

60

70

80

90

100

%

RNN (tanh)
RNN (leaky ReLU)
RNN (tanh) w. active pitches and instruments
RNN BN (tanh)
RNN BN (tanh) LONG
RNN BN (tanh) no BN on output layers
RNN BN (ReLU)
RNN BN (ReLU) no BN on sampled vector

Figure 6.1: Comparisons between teacher-forced (upper) and full (lower) reconstruction of the
dataset for models with only a VAE trained on a small subset of the MAHLER dataset with batch
size 128, learning rate 0.001, RMSProp as optimizer and single layers with 256 units for both input
encoder and decoder. The latent space had a size of 128 units and the beats conditioning was used
for every model. Training was done over 440 epochs for all non-BN versions and 220 for models
with BN except for the BN model marked with LONG which was also trained for 440 epochs. The
free bits technique only was used in the VAE loss with 48 bits.

162 6 DISCUSSION

Example 6.1 shows an interpolation that is of high quality between two bars with moderately
many events. The model used is simpler than many other models and not trained with batch
normalization, but on the other hand with 48 free bits in the VAE loss, and still outperforms all
the others. An even more impressive sample taken with the same model is presented below. Due to
lack of space, only the first three and last two bars generated by the model are present (remember
that the first and last bars are just copies off the original) and some instruments have been left
out. The final bar contains a lot of events and the model produces very good results, alas the sign
of posterior collapse shows towards the end of each bar where most mistakes are made.

Contrabass

Strings

Basset	Clarinet

Horn	in	F

Tuba

Bassoon

Example 6.2: 10-step interpolation (sample 4-2) between similar bars (1 and 5) in Mahler61 from
the MAHLER dataset. Model was trained with a VAE loss with 48 free bits and with single layers
of 256 units in input encoder and decoder and a 128 unit large latent space.

6 DISCUSSION 163

There is thus a question aside from the posterior collapse that deals with how to measure the
smoothness of the latent space and what means to use to get one. Batch normalization, in general,
is useful without doubt but perhaps the rather particular scenario with a VAE causes it to have
some negative side effects, perhaps dealing with the fact that training times are shortened which
might result in less sampled vectors from the latent space which in turn might yield a latent space
more prone to holes and irregularities.

As a final example in the discussion, a model that was not at all expected to perform well produced
the below interpolation. It is not impressive in terms of an interpolation, because it is not very
smooth nor exact. However, it has a certain musicality to it which further accentuates a lot of the
questions of both philosophical and practical nature that are dealt with in algorithmic composition,
manifested in this example with the following inquiry: is it an unsuccessful model because it cannot
interpolate nicely between the endpoints, or is it a successful model because it can generate music
that sounds nice?

Example 6.3: 10-step interpolation (sample 4-3) in example 4-3 from a model with an RNN
decoder with standard VAE loss trained on the PIANOMIDI dataset.

7 FUTURE WORK
In this section future directions of work are discussed, initially with respect to MahlerNet. Zooming
out, other strategies are then suggested, finally concluding with some remarks of the entire field of
algorithmic composition with neural networks.

7.1 MahlerNet
MahlerNet has several bugs that should be fixed and improvements that can be made out of which
a few stick out as more interesting to pursue:

• Support for the use of different size context and input should be implemented so that Mahler-
Net can be given a slightly larger contextual history to work with, making longer-term de-
pendencies more likely.

• In orchestral music, trills and tremolos cause extra harm in MIDI since they are modelled
as they sound, leading to an explosion of short notes which drastically increases the number
of events in bars. Ideally, these should be modelled as they are notated and if this is not
possible, they should with benefit be removed. An extra preprocessing step should therefore
be constructed removing or simplifying these notes.

• The conversion to and from the low-level data representation should be handled by a plugin
class to facilitate switching between data representations. This in order to, for example,
attempt to use the same representation that is used in PerformanceRNN where only one
event is modelled every time step (effectively collapsing the currently hierarchical output
layers into a single output layer segmented into the different properties).

• More focus should be on voices in the input MIDI and less on instrument. For example,
different string voices should be modelled as different instruments (nonetheless using the
same actual output MIDI instrument) since merging all strings in the input training data
into the same instrument creates exactly the kind of unidiomatic music that MahlerNet should
not generate. As a consequence, such patterns are often spotted in the output strings.

• To further facilitate long-term structure, the context can be made more dependent on the
previous context by storing the RNN states in between contexts. This makes it necessary to
process data in a certain order however and also requires some extra preprocessing steps.

165

166 7 FUTURE WORK

• Given that the standard RNN performed better than the BALSTM, a new approach should
be attempted where each training sample is randomly transposed to a nearby key, as is done
in MusicVAE.

• Focusing more on the structure of the latent space, t-sne visualizations should be implemented
to further investigate how and when for example batch normalization has a negative impact.

• Weighed losses should be implemented to place a higher priority on pitch which is harder to
model than the remaining properties.

• Investigate a loss component that is proportional to the distance between target class and
predicted class; both offset, duration and pitch classes are modelled in an ordered way so
that the closer to the correct class the prediction is, the better a model you have.

• Additional conditioning regarding for example composer, music genre and time signature
should be introduced and evaluated.

On a side note, exchanging the Mido library for another one, might also prove beneficial since Mido
turned out to be unable to parse quite a lot of MIDI files, even from well-known datasets.

7.2 Other Strategies
During and after the work of MahlerNet, a number of other similar strategies have been thought
of and should ideally be evaluated as well:

• Implementing the concepts of MahlerNet as part of a recurrent variational network, similar
to how the VRNN works (Chung et al., 2015), so that only one time step at a time is
modelled, allowing for long-term dependencies of, in theory, arbitrary length. There have
been a few attempts similar to this but none of them uses the same layout as the VRNN
which is the variational recurrent model that have departed the least from a standard RNN.

• Model each output track, voice or instrument independently with a feedforward network
modelling what tracks (or voices or instruments) to include. This would make some assump-
tions about the modelled properties and how they correlate between time steps more correct.
Tracks or instrument information from MIDI files could be used for this purpose during train-
ing. If the needed information is not present in the input files, extra annotations would be
required.

• Decode each property in an independent RNN. This does not make sense intuitively but
would still be interesting to investigate.

• Implement a hierarchical model where the high hierarchy submodel outputs a representation
for every non-zero offset that is moved ahead and a lower hierarchy submodel is responsible
for modelling all the simultaneous output at that time (allowing for sequential polyphony in

7 FUTURE WORK 167

the lower hierarchy submodel). This could potentially solve the problem with mode collapse
as well and resembles the MusicVAE, albeit with a different hierarchical modelling strategy.

7.3 Future Directions and Conceptual Ideas
Some developments and trends in machine learning seem more appropriate for music and are likely
legitimate indicators of which directions to head down. Given that the output music should be
in the same style as some music that exists today, it should contain repetitions, e.g. express self-
similarity, and at the same time give room for contrasts. These properties, not necessarily similar
to any other sequential modelling field, lead to the notions of hierarchies and attention becoming
very interesting and appropriate. Hierarchies because music is hierarchical and is built up from
sections, passages, phrases, themes and motives, and attention because music is self-similar and
refers to previous parts of itself. A common musico-philosophical thought, formalized by Lerdahl
and Jackendoff in a Generative Theory of Tonal Music (Lerdahl and Jackendoff, 1982) is
the concept of musical patterns and structures being perceived and constructed by the human
listening to music, as opposed to necessarily being present in the material. An ensuing thought in
this direction would then be to not bother with any guidance or particular measures at all since
we will find some patterns to hang on to no matter. Even though the observation by Lerdahl and
Jackendoff is likely, our brains have limits and there must be some sort of patterns for our brains
to be able to detect it, and so the notion of self-similarity is very central to the concept of music,
no matter if it is a property welded into the music on purpose or not. An informal proof of that
not all sounds contain patterns to be found is that there exists something that we refer to as noise
which, essentially, is unstructured sounds without patterns.

In some areas, it is harder to determine the future developments. For example, how the trend to use
networks with several more or less disjoint components doing different things will stand against the
monolithic approach of one end-to-end network doing all the work is hard to say. The same goes
for the approach that networks are merely a tool for the composer who guides the network, or uses
its output as ideas or partial compositions to be finalized by herself, that stand against the dream
of models that output fully-fledged pieces of music exhibiting all the properties of qualitative music
that we might have. In these areas, it is thus a good idea to stick with a variety of approaches and
see what direction future research takes.

As far as training data is concerned, the field of algorithmic composition of symbolic music with
neural networks suffers from a barrier holding it back. There are tons of sheet music available
online but as of today, there is no simple and efficient way to convert it to a data representation.
Conversions to MIDI have been done to a large extent but after working with MahlerNet, it is
obvious that MIDI does not map onto written music and introduces a number of problems that
moves the data representation away from the symbolic musical domain in the direction towards
the sounding musical domain. Therefore the MIDI format does not fill the intended purpose to
bridge the aforementioned gap. Formats like ABC and MusicXML are suitable since they have a

168 7 FUTURE WORK

one-to-one relationship to symbolic music but these formats are not as widely spread and used as is
MIDI. An important contribution that needs to be investigated would therefore be computer vision
algorithms that can take a PDF file of written music and turn it into an exact data representation,
effectively making preprocessing and therefore learning much more efficient and with more data
available. Such software does exist today, but to the knowledge of the author, it seems as if it only
works under very special circumstances and not at all for most of the scanned sheet music available
on the web today. A negative side effect of the excessive amount of preprocessing of MIDIs is that
it is harder to compare publications, because there might be important differences on a micro level
in the preprocessing not accounted for in writing. With a more uniform way to represent symbolic
music as data, this problem would, at least in part, go away. Alas, the data representation and
training data is of utter importance as previously remarked. More unified standards as far as
evaluation is concerned is also desirable for the future as is also a closer connection to the real-
world field where algorithms are intended to play a role, as discussed in the summary in chapter
3. Hence samples should always be available, without exception, for contributions to matter.

On a more artistic notion, going in an entirely other direction than earlier, algorithmic composition
is also used to create new music that does not mimic human compositions, and for the future, it
is desirable that this direction is explored to a higher degree. After all, one might with reason
object against having access to the unlimited boundaries of a computer and still attempting to do
what has been done manually for about a thousand years. This path of exploration could involve
microtones, quarter tones, new scales or entirely new sounds and would really amount to a new
type of composition with new limitations and horizons. One such example is when Barlow uses
the computer to create music that has fourteen different tempi in parallel (Supper, 2001).

At the time of the finalization of this work, a new model from OpenAI named MuseNet has just
been disclosed and the preliminary glimpses reveal that it is an absolutely extraordinary model,
advancing the field of algorithmic composition with neural networks a great deal. The remarkable
results are among the first surfacing from using the relatively new Transformer architecture, in
which sequence to sequence models are built using feedforward networks with attention only, ren-
dering the recurrent parts of the the traditional sequence to sequence network obsolete. Among
other things, such a model has the advantages over RNNs that it lends itself to parallelization and
also maintains a shorter path in the computational graph between input and target. MuseNet has
more than seventy layers and uses a context of over 4000 tokens to predict the next; a task that
it manages exemplary, effectively establishing the Transformer as the new state of the art, and
subsequently the future, in the field.

8 CONCLUSION
Music is an art, which makes it harder to determine which way to go and how to weigh results,
when compared to the development in for example image classification, where right and wrong are
clear and distinct. This has caused the field of algorithmic composition with neural networks to be
diverse, and it is of great joy to see the creativity of composing music get shifted to the creativity
of modelling a network that composes music.

In this work, an elaborate contemporary literature survey over algorithmic composition in general
and algorithmic composition with neural networks in particular has been presented. Inspired by
previous work and some of the more successful achievements in the field, MahlerNet, a new neural
network architecture adhering to a predefined set of conditions out of which all were fulfilled, has
been suggested. The novelty of MahlerNet lies in how existing components of neural networks
used in algorithmic composition have been put together as well as the preprocessing steps used to
transform MIDI to a data representation with symbolic music in mind. The possibility to model
an arbitrary number of instruments, in this work restricted to 23, is also, to the author’s best
knowledge, a new contribution to the community as is therefore also the data representation used
even though some parts of it have been used before. MahlerNet was evaluated with a baseline RNN
decoder and a BALSTM decoder out of which the former turned out to be superior. The BALSTM
decoder on the other hand is slower to train, requires more memory and performs worse than the
baseline RNN decoder, even when evaluated for pitch invariance; the very property it was picked
for. Reasons for the BALSTM performing bad might be that the context in which it is deployed
differs significantly from how it was originally used, but additional investigation is needed to be
sure. It was furthermore concluded that even though seemingly contributing positively, both batch
normalization and scheduled sampling gave rise to results that were worse than with the vanilla
setup. Batch normalization especially seems to affect the latent space negatively even though more
research is needed to support this claim. Scheduled sampling improved, if anything, training but
subjectively resulted in slightly less interesting samples and could only be used interchangeably
with some extra conditionings, that was not possible to use along with scheduled sampling. Even
though there has been some criticism against scheduled sampling, it is hard to know whether the
subtle advantage of not using it here comes from the extra conditionings or is connected to the
criticism in question. Finally, the VAE free bits and β-VAE extensions had a bad impact on the
latent space which could most obviously be determined by very poor random sample quality; a
feature not obvious from the MusicVAE, one of the MahlerNet predecessors. MahlerNet honors all
the conditions that was placed on it and lends itself to arbitrary further conditionings, for example
with information about genre, composer or time signature.

MahlerNet manages to generate musically idiomatic output which bears significant traits from

169

170 8 CONCLUSION

the music it has been trained on. The historically limited scope of one bar of context conditions
MahlerNet and creates long-term structure between bars of music in terms of instrumentation,
dynamics, basic patterns and key. There is however little long-term structure as far as more concrete
musical building blocks, such as motives and themes, are concerned. When applied to bars with
longer sequences of music, MahlerNet suffers from posterior collapse and has trouble to reconstruct
the input without teacher forcing. The former lack of long-term structure is understandable whereas
the latter indicates a somewhat flawed architecture which calls for a change in design. MahlerNet
generates interesting music, perhaps in different ways, both from predicting the next bar based
on the previous and by means of interpolation between two bars. The latter does not always
result in a smooth interpolation, but instead often the music is interesting and with a thread, in
terms of repeated bass notes or variations on a theme, that might be easier to follow than the free
compositions. Interpolations and samples from the latent space of the VAE show that structure,
density and smoothness of this space depend on more than just full reconstruction accuracy, alas
more research has to determine exactly what constitutes favorable training for the latent space
to possess these advantageous characteristics. Often, music generated from scratch, as opposed
to seeded, is more coherent even though MahlerNet often manages to continue in somewhat the
same style when generation is started with a seed. Even though all generated music has qualitative
aspects and resemble the music used during training, models trained on baroque and classic music
tend to produce music that sounds better than the models trained on romantic Mahler music.
Reasons for this may be that romantic music in general is more dissonant and messy, especially
Mahler, than baroque and classic music but in particular, romantic music is often held together
by the use of motives and themes which is exactly the type of long-term structure that MahlerNet
cannot handle.

MahlerNet can be improved and further explored in several ways and future models, preferably
based on hierarchies and attention, will continue to improve results but the most important future
development for modelling music with neural networks is to bridge the gap between the enormous
amounts of symbolic music that exist in sheet music form and some representation that can work as
input to a neural network pipeline. This could be solved by an increased interest in, and subsequent
standardization of, one of the existing formats that maps more directly to written symbolic music
than does MIDI. These formats have existed for a long time and since no informal consensus, as
to what format to widely use, exists, a sudden change in this aspect is highly unlikely. The most
important way forward is therefore to develop computer vision techniques for reading arbitrary
scores and sheet music into a data representation that adheres more to the written representation
than does MIDI.

ACKNOWLEDGEMENTS
The author of this thesis would like to thank Bob Sturm for having been an available and insightful
supervisor.

The following software was used during the work:

• NotationPlayer3 - software to render MIDI files into written music

• Musescore - software to render MIDI files into written music

• Audacity - audio editing software

• PDFResizer.com - online PDF tool where you can crop your PDFs

• Overleaf.com - online LATEX tool for writing and printing to PDF

BIBLIOGRAPHY
Adiloglu, K. and Alpaslan, F. N. (2007). A machine learning approach to two-voice counterpoint
composition. Knowledge-Based Systems, 20:300–309.

Agarwala, N., Inoue, Y., and Sly, A. (2017). Music Composition using Recurrent Neural Networks.
Technical report, Stanford University.

Baggi, D. L. (1998). Università Degli Studi di Milano "The Role of Computer Technology in
Music and Musicology". http://www.lim.di.unimi.it/events/ctama/baggi.htm. Accessed:
2018-03-03.

Bayer, J. and Osendorfer, C. (2015). Learning Stochastic Recurrent Networks. In International
Conference on Learning Representations 2015.

Bayer, J., Osendorfer, C., Urban, S., Chen, N., Korhammer, D., and van der Smagt, P. (2013). On
Fast Dropout and its Applicability to Recurrent Networks. In ICLR 2014, Calgary, Canada.

Bellgard, M. I. and Tsang, C. P. (1994). Harmonizing Music the Boltzmann Way. Connection
Science, pages 281–297.

Bengio, S., Vinyals, O., Jaitly, N., and Shazeer, N. (2015). Scheduled Sampling for Sequence
Prediction with Recurrent Neural Networks. CoRR, abs/1506.03099.

Bengio, Y., Boulanger-Lewandowski, N., and Pascanu, R. (2012). Advances in Optimizing Recur-
rent Networks. CoRR, abs/1212.0901.

Berger, J. and Gang, D. (1997). A Neural Network Model of Metric Perception and Cognition in
the Audition of Functional Tonal Music. 1998 International Computer Music Conference.

Berger, J. and Gang, D. (1999). A Real Time Model of the Formulation and Realization of Musical
Expectations. Submitted to Musical Perception.

Bickerman, G., Bosley, S., Swire, P., and Keller, R. (2010). Learning to Create Jazz Melodies
Using Deep Belief Nets. In First International Conference on Computational Creativity.

Boulanger-Lewandowski, N., Bengio, Y., and Vincent, P. (2012). Modeling Temporal Dependencies
in High-Dimensional Sequences: Application to Polyphonic Music Generation and Transcription.
Proceedings of the 29th International Conference on Machine Learning (ICML 2012).

Bowman, S. R., Vilnis, L., Vinyals, O., Dai, A. M., Józefowicz, R., and Bengio, S. (2015). Gener-
ating Sentences from a Continuous Space. CoRR, abs/1511.06349.

http://www.lim.di.unimi.it/events/ctama/baggi.htm

BIBLIOGRAPHY

Bretan, M., Oore, S., Eck, D., and Heck, L. P. (2017). Learning and Evaluating Musical Features
with Deep Autoencoders. CoRR, abs/1706.04486.

Bretan, M., Weinberg, G., and Heck, L. (2016). A Unit Selection Methodology for Music Generation
Using Deep Neural Networks. CoRR.

Briot, J., Hadjeres, G., and Pachet, F. (2017). Deep Learning Techniques for Music Generation -
A Survey. CoRR, abs/1709.01620.

Brunner, G., Wang, Y., Wattenhofer, R., and Wiesendanger, J. (2017). JamBot: Music Theory
Aware Chord Based Generation of Polyphonic Music with LSTMs. CoRR, abs/1711.07682.

Cage, J. (1961). Silence: Lectures and Writings by John Cage. University Press of New England,
Hannover, New Hampshire, USA, 2nd edition.

Chen, C.-C. J. and Miikkulainen, R. (2001). Creating Melodies with Evolving Recurrent Neural
Networks. Proceedings of the 2001 International Joint Conference on Neural Networks, pages
2241–2246.

Chen, Z., Wuy, C.-W., Yen-Cheng, L., Lerchy, A., and Chang-Tien, L. (2017). Learning to Fuse
Music Genres with Generative Adversarial Dual Learning. 2017 IEEE International Conference
on Data Mining, pages 817–822.

Choi, K., Fazekas, G., and Sandler, M. B. (2016). Text-based LSTM networks for Automatic Music
Composition. CoRR, abs/1604.05358.

Chu, H. C., Urtasun, R., and Fidler, S. (2016). Song From PI: A Musically Plausible Network for
Pop Music Generation. CoRR, abs/1611.03477.

Chung, J., Gülçehre, Ç., Cho, K., and Bengio, Y. (2014). Empirical Evaluation of Gated Recurrent
Neural Networks on Sequence Modeling. CoRR, abs/1412.3555.

Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A. C., and Bengio, Y. (2015). A Recurrent
Latent Variable Model for Sequential Data. CoRR, abs/1506.02216.

Coca, A. E., Romero, R. A. F., and Zhao, L. (2011). Generation of composed musical structures
through recurrent neural networks based on chaotic inspiration. Proceedings of International
Joint Conference on Neural Networks, pages 3220–3226.

Colombo, F. and Gerstner, W. (2018). BachProp: Learning to Compose Music in Multiple Styles.
CoRR, abs/1802.05162.

Colombo, F., Muscinelli, S., Seeholzer, A., Brea, J., and Gerstner, W. (2016). Algorithmic Com-
position of Melodies with Deep Recurrent Neural Networks. In 1st Conference on Computer
Simulation of Musical Creativity.

BIBLIOGRAPHY

Colombo, F., Seeholzer, A., and Gerstner, W. (2017). Deep Artificial Composer: A Creative
Neural Network Model for Automated Melody Generation. In Computational Intelligence in
Music, Sound, Art and Design, pages 81–96, Cham. Springer International Publishing.

Corrêa, D. C., Levada, A. L. M., Saito, J. H., and Mari, J. F. (2008). Neural network based systems
for computer-aided musical composition: supervised x unsupervised learning. Proceedings of the
2008 ACM symposium on Applied computing, pages 1738–1742.

De Felice, C., De Prisco, R., Malandrino, D., Zaccagnino, G., Zaccagnino, R., and Zizza, R. (2015).
Chorale music splicing system: An algorithmic music composer inspired by molecular splicing. In
EvoMUSART2015, Evolutionary and Biologically Inspired Music, Sound, Art and Design, pages
50–61, Cham. Springer.

De Felice, C., De Prisco, R., Malandrino, D., Zaccagnino, G., Zaccagnino, R., and Zizza, R. (2017).
Splicing Music Composition. Inf. Sci., 385:196–212.

De Prisco, R., Malandrino, D., Zaccagnino, G., Zaccagnino, R., and Zizza, R. (2017). Chorale
music splicing system: An algorithmic music composer inspired by molecular splicing. In Evo-
MUSART 2017, Computational Intelligence in Music, Sound, Art and Design, pages 97–113,
Cham. Springer.

Diaz-Jerez, G. (2011). Composing with Melomics: Delving into the Computational World for
Musical Inspiration. Leonardo Music Journal, 21:13–14.

Dong, H.-W., Hsiao, W.-Y., Yang, L.-C., and Yang, Y.-H. (2017). MuseGAN: Multi-track Se-
quential Generative Adversarial Networks for Symbolic Music Generation and Accompaniment.
AAAI 2018.

Duff, M. O. (1989). Backpropagation and Bach’s 5th cello suite (Sarabande). Proceedings of the
International Joint Conference on Neural Networks, page 575.

Eck, D. and LaPalme, J. (2006). Learning Musical Structure Directly from Sequences of Music.
Technical report, Université de Montréal.

Eck, D. and Schmidhuber, J. (2002). A First Look at Music Composition using LSTM Recurrent
Neural Networks. IDSIA Technical Report.

Edwards, M. (2011). Algorithmic Composition: Computational Thinking in Music. Communica-
tions of the ACM, 54(7):58–67.

Engel, J., Resnick, C., Roberts, A., Dieleman, S., Eck, D., Simonyan, K., and Norouzi, M. (2017).
Neural Audio Synthesis of Musical Notes with WaveNet Autoencoders. CoRR, abs/1704.01279.

Eppe, M., Alpay, T., and Wermter, S. (2018). Towards End-to-End Raw Audio Music Synthesis.
In Proceedings of the 27th Conference on Artificial Neural Networks (ICANN).

Fabius, O. and van Amersfoort, J. R. (2015). Variational Recurrent Auto-Encoders. ICLR 2015.

BIBLIOGRAPHY

Fernàndez, J. D. and Vico, F. (2013). AI Methods in Algorithmic Composition: A Comprehensive
Survey. Journal of Artificial Intelligence, 48:513–582.

Franklin, J. A. (2001). Multi-Phase Learning for Jazz Improvisation and Interaction. In Proc.
Eighth Biennial Symposium on Arts and Technology.

Franklin, J. A. (2004). Recurrent Neural Networks and Pitch Representations for Music Tasks.
Proc. 2004 Florida AI Research Sympos. (FLAIRS04) Special Track on AI and Music., pages
33–37.

Franklin, J. A. (2005). Jazz Melody Generation from Recurrent Network Learning of Several Human
Melodies. Proceedings of the Eighteenth International Florida Artificial Intelligence Research
Society Conference.

Franklin, J. A. (2005 / 2006). Recurrent Neural Networks for Music Computation. Informs Journal
on Computing, pages 321–338.

Franklin, J. A. and Locke, K. K. (2004 / 2005). Recurrent Neural Networks for Musical Pitch
Memory and Classification. International Journal on Artificial Intelligence Tools, pages 329–
342.

Freisleben, B. (1992). The Neural Composer: A Network for Musical Applications. Proceedings of
the 1992 International Conference on Artificial Neural Networks, pages 1663–1666.

Gan, Z., Li, C., Henao, R., Carlson, D., and Carin, L. (2015). Deep Temporal Sigmoid Belief
Networks for Sequence Modeling. In Proceedings of the 28th International Conference on Neural
Information Processing Systems - Volume 2, NIPS’15, pages 2467–2475, Cambridge, MA, USA.
MIT Press.

Gang, D. and Berger, J. (1996). Modeling the Degree of Realized Expectation in Functional Tonal
Music: A Study of Perceptual and Cognitive Modeling Using Neural Networks. In Proceedings
of the International Computer Music Conference.

Gang, D., Lehmann, D., and Wagner, N. (1999). Tuning Neural Network for Harmonizing Melodies
in Real-Time. In International Computer Music Conference (ICMC98).

Gang, D. and Lehmann, D. J. (1995). An Artificial Neural Net for Harmonizing Melodies. In
ICMC.

Gang, D., Lehmann, D. J., and Wagner, N. (1997). Harmonizing Melodies in Real-Time: the
Connectionist Approach. In Proceedings of the International Computer Music Conference.

Github.com (2019). MIDI Objects for Python. https://github.com/mido/mido. Accessed: 2019-
05-15.

Goel, K., Vohra, R., and K., S. J. (2014). Polyphonic Music Generation by Modeling Temporal
Dependencies Using a RNN-DBN. Lecture Notes in Computer Science, 8681:217–224.

https://github.com/mido/mido

BIBLIOGRAPHY

Goldman, C. V., Gang, D., and S., R. J. (1996 / 1999). NetNeg: A connectionist-agent integrated
system for representing musical knowledge. Annals of Mathematics and Artificial Intelligence,
pages 69–90.

Goodfellow, I. J. (2017). NIPS 2016 Tutorial: Generative Adversarial Networks. CoRR,
abs/1701.00160.

Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A., and Bengio, Y. (2013). Maxout
Networks. In Proceedings of the 30th International Conference on International Conference on
Machine Learning - Volume 28, ICML’13.

Gregor, K., Danihelka, I., Graves, A., and Wierstra, D. (2015). DRAW: A Recurrent Neural
Network For Image Generation. CoRR, abs/1502.04623.

Guimaraes, G., Sanchez-Lengeling, B., Outeiral, C., Cunha Farias, P. L., and Aspuru-Guzik, A.
(2017). Objective-Reinforced Generative Adversarial Networks (ORGAN) for Sequence Genera-
tion Models. CoRR.

Gülçehre, Ç., Cho, K., Pascanu, R., and Bengio, Y. (2013). Learned-norm pooling for deep neural
networks. CoRR, abs/1311.1780.

Hadjeres, G. and Nielsen, F. (2017). Interactive Music Generation with Positional Constraints
using Anticipation-RNNs. CoRR, abs/1709.06404.

Hadjeres, G., Nielsen, F., and Pachet, F. (2017). GLSR-VAE: Geodesic Latent Space Regularization
for Variational AutoEncoder Architectures. CoRR, abs/1707.04588.

Hadjeres, G. and Pachet, F. (2017). DeepBach: a Steerable Model for Bach chorales generation.
CoRR, abs/1612.01010.

Hennig, J. A., Umakantha, A., and Williamson, R. C. (2017). A Classifying Variational Autoen-
coder with Application to Polyphonic Music Generation. CoRR, abs/1711.07050.

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., and
Lerchner, A. (2016). β-VAE: Learning Basic Visual Concepts with a Constrained Variational
Framework. In Proceedings of the Fifth International Conference on Learning Representations,
ICLR 2017.

Hild, H., Feulner, J., and Menzel, W. (1991). HARMONET: a neural net for harmonising chorales
in the style of J.S. Bach. Advances in Neural Information Processing 4, pages 267–274.

Hiller, L. A. and Isaacson, L. M. (1959). Experimental Music: Composition with an Electronic
Computer. McGraw-Hill Book Company, 1st edition.

Huang, A. and Wu, R. (2016). Deep Learning for Music. CoRR, abs/1606.04930.

BIBLIOGRAPHY

Huang, C.-Z., Cooijmans, T., Roberts, A., Courville, A., and Eck, D. (2017). Counterpoint by
Convolution. In The 18th International Society for Music Information Retrieval Conference.

Huang, C.-Z. A., Duvenaud, D., and Gajos, K. Z. (2016). ChordRipple: Recommending Chords
to Help Novice Composers Go Beyond the Ordinary. In Proceedings of the 21st International
Conference on Intelligent User Interfaces, IUI ’16, pages 241–250, New York, NY, USA. ACM.

Huszár, F. (2015). A Word of Caution on Scheduled Sampling for Training RNNs. https://www.
inference.vc/scheduled-sampling-for-rnns-scoring-rule-interpretation/. Accessed:
2019-06-11.

Hörnel, D. and Menzel, W. (1998). Learning Musical Structure and Style with Neural Networks.
Computer Music Journal, 22(4):44–62.

Jacob, B. L. (1996). Algorithmic Composition As a Model of Creativity. Org. Sound, 1(3):157–165.

Jaques, N., Gu, S., Bahdanau, D., Hernández-Lobato, J. M., Turner, R. E., and Eck, D. (2017).
Sequence Tutor: Conservative Fine-Tuning of Sequence Generation Models with KL-control.
CoRR.

Jaques, N., Gu, S., Bahdanau, D., Lobato, J. M. H., Turner, R. E., and Eck, D. (2016). Tuning
Recurrent Neural Networks With Reinforcement Learning. In NIPS 2016 Deep Reinforcement
Learning Workshop.

Johnson, D. D. (2017). Generating Polyphonic Music Using Tied Parallel Networks. In Evo-
MusArt2017.

Kalingeri, V. and Grandhe, S. (2016). Music Generation with Deep Learning. CoRR,
abs/1612.04928.

Kingma, D. P., Salimans, T., and Welling, M. (2016). Improving Variational Inference with Inverse
Autoregressive Flow. CoRR, abs/1606.04934.

Koh, E. S., Wright, D., and Dubnov, S. (2018). Capturing Musical Structure Using Convolutional
Recurrent Latent Variable Model. Submitted to ICLR2018.

Koutník, J., Greff, K., Gomez, F. J., and Schmidhuber, J. (2014). A Clockwork RNN. CoRR,
abs/1402.3511.

Laden, B. and Keefe, D. H. (1989). The Representation of Pitch in a Neural Net Model of Chord
Classification. Computer Music Journal, 13(4):12–26.

Large, E. W., Palmer, C., and Pollack, J. B. (1995). Reduced Memory Representations for Music.
Cognitive Science, 19:53–96.

Lattner, S., Grachten, M., and Widmer, G. (2016). Imposing higher-level Structure in Polyphonic
Music Generation using Convolutional Restricted Boltzmann Machines and Constraints. CoRR,
abs/1612.04742.

https://www.inference.vc/scheduled-sampling-for-rnns-scoring-rule-interpretation/
https://www.inference.vc/scheduled-sampling-for-rnns-scoring-rule-interpretation/

BIBLIOGRAPHY

Lee, S.-g., Hwang, U., Min, S., and Yoon, S. (2017). A SeqGAN for Polyphonic Music Generation.
CoRR.

Lerdahl, F. and Jackendoff, R. S. (1982). A Generative Theory of Tonal Music. The MIT Press,
Cambridge, MA, USA, 1st edition.

Lewis, J. (1991). Music and Connectionism, chapter Creation by Refinement and the Problem of
Algorithmic Music Composition, pages 212–228. The MIT Press.

Liang, F., Gotham, M., Johnson, M., and Shotton, J. (2017). Automatic Stylistic Composition of
Bach Chorales with Deep LSTM. In 18th International Society for Music Information Retrieval
Conference.

Lindenmayer, A. (1968a). Mathematical Models for Cellular Interactions in Development: I. Fila-
ments with One-sided Inputs. Journal of Theoretical Biology, pages 280–299.

Lindenmayer, A. (1968b). Mathematical Models for Cellular Interactions in Development: II.
Simple and Branching Filaments with Two-sided Inputs. Journal of Theoretical Biology, pages
300–315.

Lischka, C. (1987). Connectionist Models of Musical Thinking. Proceedings of the International
Computer Music Conference 1987, pages 190–196.

Lischka, C. (1989 / 1991). Understanding Music Cognition: A Connectionist View. Representations
of Musical Signals, pages 417–445.

Liu, I.-T. and Ramakrishnan, B. (2014). Bach in 2014: Music Composition with Recurrent Neural
Network. Under review as a workshop contribution at ICLR 2015.

Lousseief, E. (2015). Med motiv som tema. Globe Edit, Saarbrücken, Germany, 1st edition.

Lyu, Q., Wu, Z., Zhu, J., and Meng, H. (2015). Modelling High-dimensional Sequences with LSTM-
RTRBM: Application to Polyphonic Music Generation. In Proceedings of the 24th International
Conference on Artificial Intelligence.

Madjiheurem, S., Qu, L., and Walder, C. (2016). Chord2Vec: Learning Musical Chord Embeddings.
In Constructive Machine Learning 2016.

Malik, I. and Ek, C. H. (2017). Neural Translation of Musical Style. CoRR, abs/1708.03535.

Mao, H. H., Shin, T., and Cottrell, G. W. (2018). DeepJ: Style-Specific Music Generation. CoRR,
abs/1801.00887.

Mehri, S., Kumar, K., Gulrajani, I., Kumar, R., Jain, S., Sotelo, J., Courville, A. C., and Bengio,
Y. (2017). SampleRNN: An Unconditional End-to-End Neural Audio Generation Model. CoRR,
abs/1612.07837.

BIBLIOGRAPHY

Melo, A. F. and Wiggins, G. A. (2003). A Connectionist Approach to Driving Chord Progressions
Using Tension. Proceedings of the AISB ’03 Symposium on Creativity in Arts and Science.

Meyer, L. B. (1967). Music, the Arts, and Ideas: Patterns and Predictions in Twentieth-century
culture. The University of Chicago Press, Chicago, AZ, USA, 2nd edition. Accessed: 2018-03-02.

Mogren, O. (2016). C-RNN-GAN: Continuous Recurrent Neural Networks with Adversarial Train-
ing. CoRR.

Mordvintsev, A., Olah, C., and Tyka, M. (2015). Inceptionism: Going Deeper into Neural Networks.
https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html.

Mozer, M. C. (1990). Connectionist Music Composition Based on Melodic, Stylistic, and Psy-
chophysical Constraints. Computer Science Technical Reports.

Mozer, M. C. (1994). Neural Network Music Composition by Prediction: Exploring the Benefits
of Psychoacoustic Constraints and Multi-Scale Processing. Connection Science, pages 247–280.

Mozer, M. C. and Soukup, T. (1991). Connectionist Music Composition Based on Melodic and
Stylistic Constraints. Advances in Neural Information Processing 3, pages 789–796.

Nayebi, A. and Vitelli, M. (2015). GRUV : Algorithmic Music Generation using Recurrent Neural
Networks.

Nierhaus, G. (2009). Algorithmic Composition: Paradigms of Automated Music Generation.
SpringerWienNewYork, Wien, Austria, 1st edition.

Nishijima, M. and Watanabe, K. (1993). Interactive music composer based on neural networks.
Fujitsu Scientific Technical Journal, pages 189–192.

ntu.edu.tw (2019). The MIDI File Format. https://www.csie.ntu.edu.tw/~r92092/ref/midi/.
Accessed: 2019-05-15.

O’Brien, T. M. and Román, I. (2016). A Recurrent Neural Network for Musical Structure Process-
ing and Expectation.

Papadopoulos, G. and Wiggins, G. (1999). AI Methods for Algorithmic Composition: A Survey, a
Critical View and Future Prospects. AISB Symposium on Musical Creativity, pages 110–117.

Pascanu, R., Gülçehre, Ç., Cho, K., and Bengio, Y. (2013). How to Construct Deep Recurrent
Neural Networks. CoRR, abs/1312.6026.

Prusinkiewicz, P. (1986). Score Generation with L-Systems. Proceedings of the 1986 International
Computer Music Conference, pages 455–457.

Radford, A., Metz, L., and Chintala, S. (2015). Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks. CoRR, abs/1511.06434.

https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://www.csie.ntu.edu.tw/~r92092/ref/midi/

BIBLIOGRAPHY

Riedmiller, M. and Braun, H. (1993). A Direct Adaptive Method for Faster Backpropagation
Learning: the RPROP Algorithm. IEEE International Conference on Neural Networks, pages
586–591.

Roberts, A., Engel, J., and Eck, D. (2017). Hierarchical Variational Autoencoders for Music. In
Workshop on Machine Learning for Creativity and Design, NIPS.

Roberts, A., Engel, J., Raffel, C., Hawthorne, C., and Eck, D. (2018). A Hierarchical Latent Vector
Model for Learning Long-Term Structure in Music. CoRR, abs/1803.05428.

Ron, D., Singer, Y., and Tishby, N. (1996). The Power of Amnesia. Machine Learning, 25:117–149.

Sabathé, R., Coutinho, E., and Schuller, B. (2017). Deep recurrent music writer: Memory-enhanced
variational autoencoder-based musical score composition and an objective measure. In 2017
International Joint Conference on Neural Networks (IJCNN), pages 3467–3474.

Sarroff, A. M. and Casey, M. (2014). Musical audio synthesis using autoencoding neural nets. In
Joint 40th International Computer Music Conference (ICMC) and 11th Sound & Music Com-
puting conference (SMC).

Shin, A., Crestel, L., Kato, H., Saito, K., Ohnishi, K., Yamaguchi, M., Nakawaki, M., Ushiku, Y.,
and Harada, T. (2017). Melody Generation for Pop Music via Word Representation of Musical
Properties. CoRR, abs/1710.11549.

Sigtia, S., Benetos, E., Cherla, S., Weyde, T., Garcez, A., and Dixon, S. (2014). An RNN-based
Music Language Model for Improving Automatic Music Transcription. In International Society
for Music Information Retrieval Conference (ISMIR).

Simon, I. and Oore, S. (2017). Performance RNN: Generating Music with Expressive Timing and
Dynamics. https://magenta.tensorflow.org/performance-rnn.

Simon, I., Roberts, A., Raffel, C., Engel, J., Hawthorne, C., and Eck, D. (2018). Learning a Latent
Space of Multitrack Measures. CoRR, abs/1806.00195.

Sohn, K., Lee, H., and Yan, X. (2015). Learning Structured Output Representation using Deep
Conditional Generative Models. In Advances in Neural Information Processing Systems, pages
3483–3491.

Stange-Elbe, J. (2015). Computer und Musik: Grundlagen, Technologien und Produktionsumge-
bungen der digitalen Musik. De Gruyter Oldenbourg, 1st edition.

Sturm, B. L., Ben-Tal, O., Úna Monaghan, Collins, N., Herremans, D., Chew, E., Hadjeres, G.,
Deruty, E., and Pachet, F. (2018). Machine learning research that matters for music creation:
A case study. Journal of New Music Research, 48(1):36–55.

Sturm, B. L., Santos, J. F., Ben-Tal, O., and Korshunova, I. (2016). Music transcription modelling
and composition using deep learning. CoRR, abs/1604.08723.

https://magenta.tensorflow.org/performance-rnn

BIBLIOGRAPHY

Sun, F. (2015). DeepHear - Composing and harmonizing music with neural networks. https:

//fephsun.github.io/2015/09/01/neural-music.html.

Sun, Z., Liu, J., Zhang, Z., Chen, J., Huo, Z., Lee, C. H., and Zhang, X. (2016). Grammar
Argumented LSTM Neural Networks with Note-Level Encoding for Music Composition. CoRR,
abs/1611.05416.

Supper, M. (2001). A Few Remarks on Algorithmic Composition. Computer Music Journal,
25(1):48–53.

Teng, Y., Zhao, A., and Goudeseune, C. (2017). Generating Nontrivial Melodies for Music as a
Service. CoRR, abs/1710.02280.

Tensorflow.org (2019). An End-to-end Open Source Machine Learning Platform. https://www.

tensorflow.org/. Accessed: 2019-05-15.

Tikhonov, A. and Yamshchikov, I. P. (2017). Music Generation with Variational Recurrent Au-
toencoder Supported by History. CoRR, abs/1705.05458.

Todd, P. M. (1988). A Sequential Network Design for Musical Applications. Proceedings of the
1988 Connectionist Models Summer School, pages 76–84.

Todd, P. M. (1989). A Connectionist Approach to Algorithmic Composition. Computer Music
Journal, 13(4):27–43.

Tsang, C. P. and Bellgard, M. I. (1992). Harmonizing music using a network of Boltzmann machines.
Proceedings of the Annual Conference of Artificial Neural Networks and their Applications, pages
321–332.

Uria, B., Murray, I., and Larochelle, H. (2014). A Deep and Tractable Density Estimator. In Pro-
ceedings of the 31st International Conference on International Conference on Machine Learning
- Volume 32, ICML’14, pages I–467–I–475. JMLR.org.

van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N.,
Senior, A. W., and Kavukcuoglu, K. (2016a). WaveNet: A Generative Model for Raw Audio.
CoRR, abs/1609.03499.

van den Oord, A., Kalchbrenner, N., and Kavukcuoglu, K. (2016b). Pixel Recurrent Neural Net-
works. CoRR, abs/1601.06759.

Verbeurgt, K., Fayer, M., and Michael, D. (2004). A Hybrid Neural-Markov Approach for Learning
to Compose Music by Example. Advances in Artificial Intelligence, pages 480–484.

Vohra, R., Goel, K., and Sahoo, J. K. (2015). Modeling temporal dependencies in data using a
DBN-LSTM. In 2015 IEEE International Conference on Data Science and Advanced Analytics
(DSAA).

https://fephsun.github.io/2015/09/01/neural-music.html
https://fephsun.github.io/2015/09/01/neural-music.html
https://www.tensorflow.org/
https://www.tensorflow.org/

BIBLIOGRAPHY

Walder, C. (2016). Modelling Symbolic Music: Beyond the Piano Roll. CoRR, abs/1606.01368.

Walder, C. J. and Kim, D. (2018). Neural Dynamic Programming for Musical Self Similarity.
CoRR, abs/1802.03144.

Wang, S. and Manning, C. (2013). Fast Dropout Training. In Proceedings of the 30th International
Conference on Machine Learning, volume 28 of Proceedings of Machine Learning Research, pages
118–126, Atlanta, Georgia, USA. PMLR.

Wikipedia (2018a). Wikipedia (EN) "4’33"". https://en.wikipedia.org/wiki/4%E2%80%B233%
E2%80%B3. Accessed: 2018-03-02.

Wikipedia (2018b). Wikipedia (EN) "Aleatoric music". https://en.wikipedia.org/wiki/

Aleatoric_music. Accessed: 2018-03-02.

Wikipedia (2018c). Wikipedia (EN) "Klavierstücke (Stockhausen)". https://en.wikipedia.org/
wiki/Klavierst%C3%BCcke_(Stockhausen). Accessed: 2018-03-02.

Wikipedia (2018d). Wikipedia (EN) "Musikalisches Würfelspiel". https://en.wikipedia.org/

wiki/Musikalisches_W%C3%BCrfelspiel. Accessed: 2018-03-02.

Wikipedia (2018e). Wikipedia (EN) "Twelve-tone technique". https://en.wikipedia.org/wiki/
Twelve-tone_technique. Accessed: 2018-03-02.

Wu, J., Hu, C., Wang, Y., Hu, X., and Zhu, J. (2017). A Hierarchical Recurrent Neural Network
for Symbolic Melody Generation. CoRR, abs/1712.05274.

Xenakis, I. (1992). Formalized Music: Thought and Mathematics in Composition (Harmonologia
Series no. 6). Pendragon Press, Stuyvesant, New York, USA, 2nd edition.

Yang, L.-C., Chou, S.-Y., and Yang, Y.-H. (2017). MidiNet: A convolutional Generative Adver-
sarial Network for Symbolic-Domain Music Generation. CoRR.

Ycart, A. and Benetos, E. (2017). A study on LSTM networks for polyphonic music sequence
modelling. In 18th International Society for Music Information Retrieval Conference.

Yu, L., Zhang, W., Wang, J., and Yu, Y. (2016). SeqGAN: Sequence Generative Adversarial Nets
with Policy Gradient. CoRR.

Zilly, J. G., Srivastava, R. K., Koutník, J., and Schmidhuber, J. (2016). Recurrent Highway
Networks. CoRR, abs/1607.03474.

https://en.wikipedia.org/wiki/4%E2%80%B233%E2%80%B3
https://en.wikipedia.org/wiki/4%E2%80%B233%E2%80%B3
https://en.wikipedia.org/wiki/Aleatoric_music
https://en.wikipedia.org/wiki/Aleatoric_music
https://en.wikipedia.org/wiki/Klavierst%C3%BCcke_(Stockhausen)
https://en.wikipedia.org/wiki/Klavierst%C3%BCcke_(Stockhausen)
https://en.wikipedia.org/wiki/Musikalisches_W%C3%BCrfelspiel
https://en.wikipedia.org/wiki/Musikalisches_W%C3%BCrfelspiel
https://en.wikipedia.org/wiki/Twelve-tone_technique
https://en.wikipedia.org/wiki/Twelve-tone_technique

APPENDICES

APPENDIX A

Literature Survey: Frameworks
A table over machine learning frameworks used in cited publications, when disclosed.

Publication (model) Language Frontend Framework
Bayer et al., 2013 Python - Theano
Pascanu et al. (DT(S)-RNN, DOT(S)-RNN, sRNN),
2013

Python - Theano

Chung et al., 2014 Python Pylearn2 Theano
Sarroff and Casey (DeepAutoController), 2014 Python Pylearn2 Theano
Nayebi and Vitelli (GRUV), 2015 Python Keras Theano
Vohra et al. (LSTM-DBN), 2015 Python - Theano
Bretan et al., 2016 Python - Tensorflow
Choi et al. (char-RNN, word-RNN), 2016 Python Keras ?
Colombo et al., 2016 Python - Theano
Huang and Wu, 2016 Python - Tensorflow
Kalingeri and Grandhe, 2016 Python Keras Tensorflow
Madjiheurem et al. (Chord2Vec), 2016 Python - Tensorflow
O’Brien and Román (MusicNet), 2016 Python - Tensorflow
Sun et al., 2016 Python Keras Tensorflow
Walder, 2016 Python - Tensorflow
Colombo et al. (DAC), 2017 Python - Theano
Johnson (LSTM-NADE, TP-LSTM-NADE,
BALSTM), 2017

Python - Theano

Mehri et al. (SampleRNN), 2017 Python - Theano
Engel et al., 2017 Python - Tensorflow
Hadjeres and Pachet (DeepBach), 2017 Python Keras Tensorflow
Hadjeres and Nielsen (Anticipation-RNN), 2017 Python - PyTorch
Hennig et al. (Classifying VAE, Classifying
VAE+LSTM), 2017

Python Keras Tensorflow

Jaques et al. (Sequence Tutor), 2017 Python - Tensorflow
Roberts et al. (MusicVAE), 2017 Python - Tensorflow
Roberts et al. (MusicVAE), 2018 Python - Tensorflow
Sabathé et al. (DRAW), 2017 Python - Tensorflow
Simon and Oore (PerformanceRNN), 2017 Python - Tensorflow
Teng et al., 2017 Python - Tensorflow
Ycart and Benetos, 2017 Python - Tensorflow
Yang et al. (MidiNet), 2017 Python - Tensorflow
Colombo and Gerstner (BachProp), 2018 Python Keras ?
Simon et al. (MusicVAE), 2018 Python - Tensorflow
Walder and Kim (MotifNet), 2018 Python - PyTorch

APPENDIX B

Literature Survey: Preprocessing Frameworks
A table over preprocessing frameworks used to modify input representation to internal data repre-
sentation used in cited publications, when applicable.

Publication (model) Format Language Framework
Brunner et al. (JamBot), 2017 MIDI Python pretty-midi
Colombo et al. (DAC), 2017 MIDI Python music21
Hadjeres et al. (GLSR-VAE), 2017 MIDI Python music21
Lee et al. (SeqGAN), 2017 MIDI Python music21
Shin et al., 2017 MIDI Python pretty-midi
Shin et al., 2017 MIDI Python mido
Simon et al. (MusicVAE), 2018 MIDI Python pretty-midi

APPENDIX C

Literature Survey: Datasets
A table over datasets used in cited publications, where disclosed.

Dataset Link Genre Format
The Session http://www.thesession.org Folk ABC
Nottingham
Database

http://www.cs.nott.ac.uk/~ef/music/

database.htm

Folk ABC

Nottingham
Database

http://ifdo.ca/~seymour/nottingham/

nottingham.html

Folk ABC

Nottingham
Database

http://www-etud.iro.umontreal.ca/

~boulanni/icml2012

Folk MIDI

Nottingham
Database

http://www-etud.iro.umontreal.ca/

~boulanni/icml2012

Folk Piano roll

Nottingham
Database

http://users.cecs.anu.edu.au/~u1018264/

data.html

Folk MIDI-
inspired

MuseData http://www.musedata.org Classical Humdrum /
MIDI

MuseData http://www-etud.iro.umontreal.ca/

~boulanni/icml2012

Classical MIDI

MuseData http://www-etud.iro.umontreal.ca/

~boulanni/icml2012

Classical Piano roll

MuseData http://users.cecs.anu.edu.au/~u1018264/

data.html

Classical MIDI-
inspired

Piano-
midi.de

http://www.piano-midi.de/ Classical MIDI

Piano-
midi.de

http://www-etud.iro.umontreal.ca/

~boulanni/icml2012

Classical MIDI

Piano-
midi.de

http://www-etud.iro.umontreal.ca/

~boulanni/icml2012

Classical Piano roll

Piano-
midi.de

http://users.cecs.anu.edu.au/~u1018264/

data.html

Classical MIDI-
inspired

JSB
Chorales

http://www-etud.iro.umontreal.ca/

~boulanni/icml2012

Classical MIDI

JSB
Chorales

http://www-etud.iro.umontreal.ca/

~boulanni/icml2012

Classical Piano roll

JSB
Chorales

http://users.cecs.anu.edu.au/~u1018264/

data.html

Classical MIDI-
inspired

Bach10 http://music.cs.northwestern.edu/data/

Bach10.html

Classical Audio

http://www.thesession.org
http://www.cs.nott.ac.uk/~ef/music/database.htm
http://www.cs.nott.ac.uk/~ef/music/database.htm
http://ifdo.ca/~seymour/nottingham/nottingham.html
http://ifdo.ca/~seymour/nottingham/nottingham.html
http://www-etud.iro.umontreal.ca/~boulanni/icml2012
http://www-etud.iro.umontreal.ca/~boulanni/icml2012
http://www-etud.iro.umontreal.ca/~boulanni/icml2012
http://www-etud.iro.umontreal.ca/~boulanni/icml2012
http://users.cecs.anu.edu.au/~u1018264/data.html
http://users.cecs.anu.edu.au/~u1018264/data.html
http://www.musedata.org
http://www-etud.iro.umontreal.ca/~boulanni/icml2012
http://www-etud.iro.umontreal.ca/~boulanni/icml2012
http://www-etud.iro.umontreal.ca/~boulanni/icml2012
http://www-etud.iro.umontreal.ca/~boulanni/icml2012
http://users.cecs.anu.edu.au/~u1018264/data.html
http://users.cecs.anu.edu.au/~u1018264/data.html
http://www.piano-midi.de/
http://www-etud.iro.umontreal.ca/~boulanni/icml2012
http://www-etud.iro.umontreal.ca/~boulanni/icml2012
http://www-etud.iro.umontreal.ca/~boulanni/icml2012
http://www-etud.iro.umontreal.ca/~boulanni/icml2012
http://users.cecs.anu.edu.au/~u1018264/data.html
http://users.cecs.anu.edu.au/~u1018264/data.html
http://www-etud.iro.umontreal.ca/~boulanni/icml2012
http://www-etud.iro.umontreal.ca/~boulanni/icml2012
http://www-etud.iro.umontreal.ca/~boulanni/icml2012
http://www-etud.iro.umontreal.ca/~boulanni/icml2012
http://users.cecs.anu.edu.au/~u1018264/data.html
http://users.cecs.anu.edu.au/~u1018264/data.html
http://music.cs.northwestern.edu/data/Bach10.html
http://music.cs.northwestern.edu/data/Bach10.html

APPENDIX C

Wikifonia http://www.synthzone.com/files/Wikifonia/

Wikifonia.zip

Folk, pop,
rock,
classical

MusicXML

midi_man https://redd.it/3ajwe4 Pop, video
game,
classical

MIDI

Henrik
Norbeck’s
ABC Tunes

http://www.norbeck.nu/abc/ Folk ABC

MagnaTag-
ATune

http://mirg.city.ac.uk/codeapps/

the-magnatagatune-dataset

Mixed Audio

Lakh https://colinraffel.com/projects/lmd/ Mixed MIDI
Million
Song
Dataset

https:

//labrosa.ee.columbia.edu/millionsong/

Mixed MIDI

NSynth https:

//magenta.tensorflow.org/datasets/nsynth

Instrument
timbres

Audio

Yamaha
e-Piano
Competi-
tion
datasets

http://www.piano-e-competition.com/

midiinstructions.asp

classical
piano

MIDI

Dave’s J.S.
Bach

http://www.jsbach.net Bach MIDI

John
Sankey
Bach

http://www.jsbach.net Bach MIDI

String
quartets

http://www.stringquartets.org Mozart,
Haydn

MIDI

http://www.synthzone.com/files/Wikifonia/Wikifonia.zip
http://www.synthzone.com/files/Wikifonia/Wikifonia.zip
https://redd.it/3ajwe4
http://www.norbeck.nu/abc/
http://mirg.city.ac.uk/codeapps/the-magnatagatune-dataset
http://mirg.city.ac.uk/codeapps/the-magnatagatune-dataset
https://colinraffel.com/projects/lmd/
https://labrosa.ee.columbia.edu/millionsong/
https://labrosa.ee.columbia.edu/millionsong/
https://magenta.tensorflow.org/datasets/nsynth
https://magenta.tensorflow.org/datasets/nsynth
http://www.piano-e-competition.com/midiinstructions.asp
http://www.piano-e-competition.com/midiinstructions.asp
http://www.jsbach.net
http://www.jsbach.net
http://www.stringquartets.org

APPENDIX D

Literature Survey: Results
Tables over results over the most well-known benchmark datasets.

Nottingham Dataset
Publication (model) Test loss Test acc. (%)
Boulanger-Lewandowski et al. (RANDOM), 2012 -61.00 4.53
Boulanger-Lewandowski et al. (RBM), 2012 -5.25 5.81
Boulanger-Lewandowski et al. (NADE), 2012 -5.48 22.67
Boulanger-Lewandowski et al. (MLP), 2012 -4.38 63.46
Boulanger-Lewandowski et al. (RNN), 2012 -4.46 62.93
Boulanger-Lewandowski et al. (RNN (HF)), 2012 -3.89 66.64
Boulanger-Lewandowski et al. (RTRBM), 2012 -2.62 75.01
Boulanger-Lewandowski et al. (RNN-RBM), 2012 -2.39 75.40
Boulanger-Lewandowski et al. (RNN-NADE), 2012 -2.91 64.95
Boulanger-Lewandowski et al. (RNN-NADE (HF)), 2012 -2.31 71.50
Bengio et al. (RNN (SGD)), 2012 -3.75 66.90
Bengio et al. (RNN (SGD+C)), 2012 -3.67 67.47
Bengio et al. (RNN (SGD+CL)), 2012 -3.57 67.97
Bengio et al. (RNN (SGD+CLR)), 2012 -3.55 70.20
Bengio et al. (RNN (SGD+CRM)), 2012 -3.43 68.47
Bengio et al. (RNN (HF)), 2012 -3.76 66.71
Bengio et al. (RNN-NADE (SGD)), 2012 -2.91 64.95
Bengio et al. (RNN-NADE (SGD+CR), 2012 -2.51 69.80
Bengio et al. (RNN-NADE (SGD+CRM)), 2012 -2.49 69.54
Pascanu et al. (RNN), 2013 -3.225 N/A
Pascanu et al. (DT(S)-RNN), 2013 -3.206 N/A
Pascanu et al. (DOT(S)-RNN), 2013 -3.215 N/A
Pascanu et al. (sRNN), 2013 -3.258 N/A
Pascanu et al. (DOT(S)-RNN (maxout + Lp)), 2013 -2.95 N/A
Chung et al. (RNN(tanh)), 2014 -3.13 N/A
Chung et al. (GRU), 2014 -3.23 N/A
Chung et al. (LSTM), 2014 -3.20 N/A
Bayer et al. (RNN (FD)), 2013 -3.09 N/A
Goel et al. (RNN-DBN), 2014 -2.54 N/A
Sigtia et al. (RNN (SGD)), 2014 N/A 67.89
Sigtia et al. (RNN (HF)), 2014 N/A 69.61
Sigtia et al. (RNN-NADE (SGD)), 2014 N/A 68.89
Sigtia et al. (RNN-NADE (HF)), 2014 N/A 70.61
Bayer and Osendorfer (STORN), 2015 -2.85 N/A
Gan et al. (TSBN), 2015 -3.67 N/A

APPENDIX D

Vohra et al. (LSTM-DBN), 2015 -1.32 N/A
Walder (LSTM), 2016 -2.06 N/A
Walder (LSTM (augmented)), 2016 -1.66 N/A
Walder (LSTM (augmented + pooled)), 2016 -1.57 N/A
Johnson (LSTM-NADE), 2017 -2.02 N/A
Johnson (TP-LSTM-NADE), 2017 -1.61 N/A
Johnson (BALSTM), 2017 -1.55 N/A

Musedata Dataset
Publication (model) Test loss Test acc. (%)
Boulanger-Lewandowski et al. (RANDOM), 2012 -61.00 3.74
Boulanger-Lewandowski et al. (RBM), 2012 -9.56 8.19
Boulanger-Lewandowski et al. (NADE), 2012 -10.06 7.65
Boulanger-Lewandowski et al. (MLP), 2012 -7.94 25.68
Boulanger-Lewandowski et al. (RNN), 2012 -8.13 23.25
Boulanger-Lewandowski et al. (RNN (HF)), 2012 -7.19 30.49
Boulanger-Lewandowski et al. (RTRBM), 2012 -6.35 30.85
Boulanger-Lewandowski et al. (RNN-RBM), 2012 -6.01 34.02
Boulanger-Lewandowski et al. (RNN-NADE), 2012 -6.74 24.91
Boulanger-Lewandowski et al. (RNN-NADE (HF)), 2012 -5.60 32.60
Bengio et al. (RNN (SGD)), 2012 -7.20 27.97
Bengio et al. (RNN (SGD+C)), 2012 -7.04 30.53
Bengio et al. (RNN (SGD+CL)), 2012 -6.99 31.53
Bengio et al. (RNN (SGD+CLR)), 2012 -7.34 29.06
Bengio et al. (RNN (SGD+CRM)), 2012 -7.24 29.13
Bengio et al. (RNN (HF)), 2012 -7.12 29.77
Bengio et al. (RNN-NADE (SGD)), 2012 -6.74 24.91
Bengio et al. (RNN-NADE (SGD+CR), 2012 -6.37 26.60
Bengio et al. (RNN-NADE (SGD+CRM)), 2012 -6.19 29.62
Pascanu et al. (RNN), 2013 -6.990 N/A
Pascanu et al. (DT(S)-RNN), 2013 -6.988 N/A
Pascanu et al. (DOT(S)-RNN), 2013 -6.973 N/A
Pascanu et al. (sRNN), 2013 -6.954 N/A
Pascanu et al. (DOT(S)-RNN (maxout + Lp)), 2013 -6.59 N/A
Chung et al. (RNN(tanh)), 2014 -6.23 N/A
Chung et al. (GRU), 2014 -5.99 N/A
Chung et al. (LSTM), 2014 -6.23 N/A
Bayer et al. (RNN (FD)), 2013 -6.75 N/A
Goel et al. (RNN-DBN), 2014 -6.28 N/A

APPENDIX D

Bayer and Osendorfer (STORN), 2015 -6.16 N/A
Gan et al. (TSBN), 2015 -6.81 N/A
Lyu et al. (LSTM-RTRBM), 2015 -5.54 N/A
Vohra et al. (LSTM-DBN), 2015 -3.91 N/A
Walder (LSTM), 2016 -5.16 N/A
Walder (LSTM (augmented)), 2016 -4.46 N/A
Walder (LSTM (augmented + pooled)), 2016 -4.41 N/A
Johnson (LSTM-NADE), 2017 -5.02 N/A
Johnson (TP-LSTM-NADE), 2017 -4.32 N/A
Johnson (BALSTM), 2017 -3.90 N/A

Pianomidi Dataset
Publication (model) Test loss Test acc. (%)
Boulanger-Lewandowski et al. (RANDOM), 2012 -61.00 3.35
Boulanger-Lewandowski et al. (RBM), 2012 -10.17 5.63
Boulanger-Lewandowski et al. (NADE), 2012 -10.28 5.82
Boulanger-Lewandowski et al. (MLP), 2012 -8.13 20.29
Boulanger-Lewandowski et al. (RNN), 2012 -8.37 19.33
Boulanger-Lewandowski et al. (RNN (HF)), 2012 -7.66 23.34
Boulanger-Lewandowski et al. (RTRBM), 2012 -7.36 22.99
Boulanger-Lewandowski et al. (RNN-RBM), 2012 -7.09 28.92
Boulanger-Lewandowski et al. (RNN-NADE), 2012 -7.48 20.69
Boulanger-Lewandowski et al. (RNN-NADE (HF)), 2012 -7.05 23.42
Bengio et al. (RNN (SGD)), 2012 -7.86 22.84
Bengio et al. (RNN (SGD+C)), 2012 -7.59 22.98
Bengio et al. (RNN (SGD+CL)), 2012 -7.57 22.97
Bengio et al. (RNN (SGD+CLR)), 2012 -7.80 24.22
Bengio et al. (RNN (SGD+CRM)), 2012 -7.73 23.71
Bengio et al. (RNN (HF)), 2012 -7.58 22.93
Bengio et al. (RNN-NADE (SGD)), 2012 -7.48 20.69
Bengio et al. (RNN-NADE (SGD+CR), 2012 -7.34 21.22
Bengio et al. (RNN-NADE (SGD+CRM)), 2012 -7.34 22.12
Bayer et al. (RNN (FD)), 2013 -7.39 N/A
Chung et al. (RNN(tanh)), 2014 -9.03 N/A
Chung et al. (GRU), 2014 -8.82 N/A
Chung et al. (LSTM), 2014 -9.03 N/A
Goel et al. (RNN-DBN), 2014 -7.15 N/A
Bayer and Osendorfer (STORN), 2015 -7.13 N/A
Gan et al. (TSBN), 2015 -7.98 N/A

APPENDIX D

Vohra et al. (LSTM-DBN), 2015 -4.63 N/A
Walder (LSTM), 2016 -6.67 N/A
Walder (LSTM (augmented)), 2016 -5.43 N/A
Walder (LSTM (augmented + pooled)), 2016 -4.94 N/A
Johnson (LSTM-NADE), 2017 -7.36 N/A
Johnson (TP-LSTM-NADE), 2017 -5.44 N/A
Johnson (BALSTM), 2017 -4.90 N/A
Hennig et al. (VAE), 2017 -7.51 N/A
Hennig et al. (Classifying VAE), 2017 -7.05 N/A
Hennig et al. (VAE+LSTM), 2017 -7.49 N/A
Hennig et al. (Classifying VAE+LSTM), 2017 -7.11 N/A

JSBChorales Dataset
Publication (model) Test loss Test acc. (%)
Boulanger-Lewandowski et al. (RANDOM), 2012 -61.00 4.42
Boulanger-Lewandowski et al. (RBM), 2012 -7.43 4.47
Boulanger-Lewandowski et al. (NADE), 2012 -7.19 17.88
Boulanger-Lewandowski et al. (MLP), 2012 -8.70 30.41
Boulanger-Lewandowski et al. (RNN), 2012 -8.71 28.46
Boulanger-Lewandowski et al. (RNN (HF)), 2012 -8.58 29.41
Boulanger-Lewandowski et al. (RTRBM), 2012 -6.35 30.17
Boulanger-Lewandowski et al. (RNN-RBM), 2012 -6.27 33.12
Boulanger-Lewandowski et al. (RNN-NADE), 2012 -5.83 32.11
Boulanger-Lewandowski et al. (RNN-NADE (HF)), 2012 -5.56 32.50
Bengio et al. (RNN (SGD)), 2012 -8.65 29.97
Bengio et al. (RNN (SGD+C)), 2012 -8.65 29.98
Bengio et al. (RNN (SGD+CL)), 2012 -8.63 29.98
Bengio et al. (RNN (SGD+CLR)), 2012 -9.47 29.98
Bengio et al. (RNN (SGD+CRM)), 2012 -8.81 29.52
Bengio et al. (RNN (HF)), 2012 -8.58 29.41
Bengio et al. (RNN-NADE (SGD)), 2012 -5.83 32.11
Bengio et al. (RNN-NADE (SGD+CR), 2012 -5.33 34.52
Bengio et al. (RNN-NADE (SGD+CRM)), 2012 -5.19 35.08
Bayer et al. (RNN (FD)), 2013 -8.01 N/A
Pascanu et al. (RNN), 2013 -8.338 N/A
Pascanu et al. (DT(S)-RNN), 2013 -8.278 N/A
Pascanu et al. (DOT(S)-RNN), 2013 -8.437 N/A
Pascanu et al. (sRNN), 2013 -8.367 N/A
Pascanu et al. (DOT(S)-RNN (maxout + Lp)), 2013 -7.92 N/A

APPENDIX D

Chung et al. (RNN(tanh)), 2014 -9.10 N/A
Chung et al. (GRU), 2014 -8.54 N/A
Chung et al. (LSTM), 2014 -8.67 N/A
Goel et al. (RNN-DBN), 2014 -5.68 N/A
Liu and Ramakrishnan (BPTT), 2014 N/A 21.03
Liu and Ramakrishnan (RProp), 2014 N/A 31.91
Bayer and Osendorfer (STORN), 2015 -6.91 N/A
Gan et al. (TSBN), 2015 -7.48 N/A
Lyu et al. (LSTM-RTRBM), 2015 -4.72 N/A
Vohra et al. (LSTM-DBN), 2015 -3.47 N/A
Walder (LSTM), 2016 -5.01 N/A
Walder (LSTM (augmented)), 2016 -4.34 N/A
Walder (LSTM (augmented + pooled)), 2016 -4.45 N/A
Johnson (LSTM-NADE), 2017 -6.00 N/A
Johnson (TP-LSTM-NADE), 2017 -5.88 N/A
Johnson (BALSTM), 2017 -5.05 N/A
Hennig et al. (VAE), 2017 -6.87 N/A
Hennig et al. (Classifying VAE), 2017 -6.66 N/A
Hennig et al. (VAE+LSTM), 2017 -6.83 N/A
Hennig et al. (Classifying VAE+LSTM), 2017 -6.73 N/A
Huang et al. (RNN-NADE), 2017 -5.03 N/A
Huang et al. (CocoNet (chronological ordering)), 2017 -7.79 N/A
Huang et al. (CocoNet (random ordering)), 2017 -5.03 N/A

APPENDIX E

Literature survey: Sources
Links to source code from cited publications where available.

Publication (model) Link
Bickerman et al. (RBM-Provisor), 2010 https://sourceforge.net/projects/

rbm-provisor/

Boulanger-Lewandowski et al. (RNN-RBM),
2012 (reimpl.)

http://deeplearning.net/tutorial/

rnnrbm.html

Chung et al., 2014 https://github.com/jych/librnn.git

Sarroff and Casey (DeepAutoController), 2014 https://github.com/woodshop/

deepAutoController

Gan et al. (TSBN), 2015 https://github.com/zhegan27/TSBN_code_

NIPS2015

Sun (DeepHear), 2015 https:

//github.com/fephsun/neuralnetmusic

Choi et al. (char-RNN, word-RNN), 2016 https://github.com/keunwoochoi/lstm_

real_book

Choi et al. (char-RNN, word-RNN), 2016 https:

//github.com/keunwoochoi/LSTMetallica

Jaques et al. (RL Tuner), 2016 https://github.com/natashamjaques/

magenta/tree/rl-tuner

Mogren (C-RNN-GAN), 2016 https:

//github.com/olofmogren/c-rnn-gan

O’Brien and Román (MusicNet), 2016 https:

//cm-gitlab.stanford.edu/tsob/musicNet

Sturm et al. (char-rnn, folk-rnn), 2016 https:

//github.com/IraKorshunova/folk-rnn

Yu et al. (SeqGAN), 2016 https://github.com/LantaoYu/SeqGAN

Agarwala et al., 2017 https:

//github.com/yinoue93/CS224N_proj

Brunner et al. (JamBot), 2017 https://github.com/brunnergino/JamBot

Chen et al. (FusionGAN), 2017 https://github.com/aquastar/fusion_gan

Johnson (LSTM-NADE, TP-LSTM-NADE,
BALSTM), 2017

https://github.com/hexahedria/

biaxial-rnn-music-composition

Mehri et al. (SampleRNN), 2017 https://github.com/soroushmehr/

sampleRNN_ICLR2017

Dong et al. (MuseGAN), 2017 https://github.com/salu133445/musegan

Guimaraes et al. (ORGAN), 2017 https://github.com/gablg1/ORGAN

Hadjeres and Pachet (DeepBach), 2017 https://github.com/Ghadjeres/DeepBach

https://sourceforge.net/projects/rbm-provisor/
https://sourceforge.net/projects/rbm-provisor/
http://deeplearning.net/tutorial/rnnrbm.html
http://deeplearning.net/tutorial/rnnrbm.html
https://github.com/jych/librnn.git
https://github.com/woodshop/deepAutoController
https://github.com/woodshop/deepAutoController
https://github.com/zhegan27/TSBN_code_NIPS2015
https://github.com/zhegan27/TSBN_code_NIPS2015
https://github.com/fephsun/neuralnetmusic
https://github.com/fephsun/neuralnetmusic
https://github.com/keunwoochoi/lstm_real_book
https://github.com/keunwoochoi/lstm_real_book
https://github.com/keunwoochoi/LSTMetallica
https://github.com/keunwoochoi/LSTMetallica
https://github.com/natashamjaques/magenta/tree/rl-tuner
https://github.com/natashamjaques/magenta/tree/rl-tuner
https://github.com/olofmogren/c-rnn-gan
https://github.com/olofmogren/c-rnn-gan
https://cm-gitlab.stanford.edu/tsob/musicNet
https://cm-gitlab.stanford.edu/tsob/musicNet
https://github.com/IraKorshunova/folk-rnn
https://github.com/IraKorshunova/folk-rnn
https://github.com/LantaoYu/SeqGAN
https://github.com/yinoue93/CS224N_proj
https://github.com/yinoue93/CS224N_proj
https://github.com/brunnergino/JamBot
https://github.com/aquastar/fusion_gan
https://github.com/hexahedria/biaxial-rnn-music-composition
https://github.com/hexahedria/biaxial-rnn-music-composition
https://github.com/soroushmehr/sampleRNN_ICLR2017
https://github.com/soroushmehr/sampleRNN_ICLR2017
https://github.com/salu133445/musegan
https://github.com/gablg1/ORGAN
https://github.com/Ghadjeres/DeepBach

APPENDIX E

Hadjeres and Nielsen (Anticipation-RNN),
2017

https://github.com/Ghadjeres/

Anticipation-RNN

Hennig et al. (Classifying VAE, Classifying
VAE+LSTM), 2017

https://github.com/mobeets/

classifying-vae-lstm

Huang et al. (CocoNet), 2017 https://github.com/czhuang/coconet

Jaques et al. (Sequence Tutor), 2017 https://github.com/tensorflow/magenta/

tree/master/magenta/models/rl_tuner

Liang et al. (BachBot), 2017 https:

//github.com/feynmanliang/bachbot

Roberts et al. (MusicVAE), 2017 https://github.com/tensorflow/magenta/

tree/master/magenta/models/music_vae

Roberts et al. (MusicVAE), 2018 https://github.com/tensorflow/magenta/

tree/master/magenta/models/music_vae

Shin et al., 2017 https:

//github.com/mil-tokyo/NeuralMelody

Simon and Oore (PerformanceRNN), 2017 https:

//github.com/tensorflow/magenta/tree/

master/magenta/models/performance_rnn

Ycart and Benetos, 2017 https://code.soundsoftware.ac.uk/

projects/ismir17-code

Yang et al. (MidiNet), 2017 https:

//github.com/RichardYang40148/MidiNet

Colombo and Gerstner (BachProp), 2018 https:

//github.com/FlorianColombo/BachProp

Mao et al. (DeepJ), 2018 https:

//github.com/calclavia/DeepJ/tree/icsc

Walder and Kim (MotifNet), 2018 https://bitbucket.org/cwalder/motif

https://github.com/Ghadjeres/Anticipation-RNN
https://github.com/Ghadjeres/Anticipation-RNN
https://github.com/mobeets/classifying-vae-lstm
https://github.com/mobeets/classifying-vae-lstm
https://github.com/czhuang/coconet
https://github.com/tensorflow/magenta/tree/master/magenta/models/rl_tuner
https://github.com/tensorflow/magenta/tree/master/magenta/models/rl_tuner
https://github.com/feynmanliang/bachbot
https://github.com/feynmanliang/bachbot
https://github.com/tensorflow/magenta/tree/master/magenta/models/music_vae
https://github.com/tensorflow/magenta/tree/master/magenta/models/music_vae
https://github.com/tensorflow/magenta/tree/master/magenta/models/music_vae
https://github.com/tensorflow/magenta/tree/master/magenta/models/music_vae
https://github.com/mil-tokyo/NeuralMelody
https://github.com/mil-tokyo/NeuralMelody
https://github.com/tensorflow/magenta/tree/master/magenta/models/performance_rnn
https://github.com/tensorflow/magenta/tree/master/magenta/models/performance_rnn
https://github.com/tensorflow/magenta/tree/master/magenta/models/performance_rnn
https://code.soundsoftware.ac.uk/projects/ismir17-code
https://code.soundsoftware.ac.uk/projects/ismir17-code
https://github.com/RichardYang40148/MidiNet
https://github.com/RichardYang40148/MidiNet
https://github.com/FlorianColombo/BachProp
https://github.com/FlorianColombo/BachProp
https://github.com/calclavia/DeepJ/tree/icsc
https://github.com/calclavia/DeepJ/tree/icsc
https://bitbucket.org/cwalder/motif

APPENDIX F

Literature survey: Samples
Links to listening samples from cited application where available.

Publication (model) Link
Eck and Schmidhuber, 2002 http://people.idsia.ch/~juergen/blues/

index.html

Boulanger-Lewandowski et al. (RNN-RBM,
RNN-NADE), 2012

http://www-etud.iro.umontreal.ca/

~boulanni/icml2012

Sarroff and Casey (DeepAutoController), 2014 https://andysarroff.com/projects/

autoencoding-synthesizers/

Fabius and van Amersfoort (VRAE), 2015 http://youtu.be/cu1_uJ9qkHA

Gan et al. (TSBN), 2015 https://drive.google.com/drive/u/0/

folders/0B1HR6m3IZSO_SWt0aS1oYmlneDQ

Lyu et al. (LSTM-RTRBM), 2015 https://bitbucket.org/huashiyiqike/

music-samples

Nayebi and Vitelli (GRUV), 2015 https:

//www.youtube.com/watch?v=0VTI1BBLydE

Sun (DeepHear), 2015 https://fephsun.github.io/2015/09/01/

neural-music.html

Bretan et al., 2016 https://youtu.be/BbyvbO2F7ug

Choi et al. (char-RNN, word-RNN), 2016 https://soundcloud.com/kchoi-research/

sets/lstm-realbook-1-5

Choi et al. (char-RNN, word-RNN), 2016 https://soundcloud.com/kchoi-research/

sets/lstmetallica-drums

Choi et al. (char-RNN, word-RNN), 2016 https://soundcloud.com/kchoi-research/

00-24-100-bonus-for-score

Chu et al., 2016 http://www.cs.toronto.edu/songfrompi/

Jaques et al. (RL Tuner), 2016 http://goo.gl/XIYt9m/

Lattner et al. (C-RBM), 2016 https://soundcloud.com/pmgrbm

Mogren (C-RNN-GAN), 2016 http://mogren.one/publications/2016/

c-rnn-gan/

Sturm et al. (char-rnn, folk-rnn), 2016 https:

//github.com/IraKorshunova/folk-rnn

Walder, 2016 http://users.cecs.anu.edu.au/

~u1018264/beyondthepianoroll.html

van den Oord et al. (WaveNet), 2016a https://deepmind.com/blog/

wavenet-generative-model-raw-audio/

Agarwala et al., 2017 https://yinoue93.github.io/CS224N.html

Brunner et al. (JamBot), 2017 https://www.youtube.com/channel/

UCQbE9vfbYycK4DZpHoZKcSw

http://people.idsia.ch/~juergen/blues/index.html
http://people.idsia.ch/~juergen/blues/index.html
http://www-etud.iro.umontreal.ca/~boulanni/icml2012
http://www-etud.iro.umontreal.ca/~boulanni/icml2012
https://andysarroff.com/projects/autoencoding-synthesizers/
https://andysarroff.com/projects/autoencoding-synthesizers/
http://youtu.be/cu1_uJ9qkHA
https://drive.google.com/drive/u/0/folders/0B1HR6m3IZSO_SWt0aS1oYmlneDQ
https://drive.google.com/drive/u/0/folders/0B1HR6m3IZSO_SWt0aS1oYmlneDQ
https://bitbucket.org/huashiyiqike/music-samples
https://bitbucket.org/huashiyiqike/music-samples
https://www.youtube.com/watch?v=0VTI1BBLydE
https://www.youtube.com/watch?v=0VTI1BBLydE
https://fephsun.github.io/2015/09/01/neural-music.html
https://fephsun.github.io/2015/09/01/neural-music.html
https://youtu.be/BbyvbO2F7ug
https://soundcloud.com/kchoi-research/sets/lstm-realbook-1-5
https://soundcloud.com/kchoi-research/sets/lstm-realbook-1-5
https://soundcloud.com/kchoi-research/sets/lstmetallica-drums
https://soundcloud.com/kchoi-research/sets/lstmetallica-drums
https://soundcloud.com/kchoi-research/00-24-100-bonus-for-score
https://soundcloud.com/kchoi-research/00-24-100-bonus-for-score
http://www.cs.toronto.edu/songfrompi/
http://goo.gl/XIYt9m/
https://soundcloud.com/pmgrbm
http://mogren.one/publications/2016/c-rnn-gan/
http://mogren.one/publications/2016/c-rnn-gan/
https://github.com/IraKorshunova/folk-rnn
https://github.com/IraKorshunova/folk-rnn
http://users.cecs.anu.edu.au/~u1018264/beyondthepianoroll.html
http://users.cecs.anu.edu.au/~u1018264/beyondthepianoroll.html
https://deepmind.com/blog/wavenet-generative-model-raw-audio/
https://deepmind.com/blog/wavenet-generative-model-raw-audio/
https://yinoue93.github.io/CS224N.html
https://www.youtube.com/channel/UCQbE9vfbYycK4DZpHoZKcSw
https://www.youtube.com/channel/UCQbE9vfbYycK4DZpHoZKcSw

APPENDIX F

Chen et al. (FusionGAN), 2017 http://people.cs.vt.edu/czq/

publication/fusiongan/

Colombo et al. (DAC), 2017 https://goo.gl/CHhoAu

Johnson (LSTM-NADE, TP-LSTM-NADE,
BALSTM), 2017

https://www.cs.hmc.edu/~ddjohnson/

tied-parallel/

Mehri et al. (SampleRNN), 2017 https://soundcloud.com/samplernn/sets

De Prisco et al., 2017 http://goo.gl/FWn2EX

Dong et al. (MuseGAN), 2017 https://salu133445.github.io/musegan/

Engel et al., 2017 https://magenta.tensorflow.org/nsynth

Hadjeres and Pachet (DeepBach), 2017 https://sites.google.com/site/

deepbachexamples/

Hennig et al. (Classifying VAE, Classifying
VAE+LSTM), 2017

https://mobeets.github.io/

classifying-vae-lstm/

Huang et al. (CocoNet), 2017 https://coconets.github.io/

Jaques et al. (Sequence Tutor), 2017 http://goo.gl/XIYt9m/

Lee et al. (SeqGAN), 2017 https://soundcloud.com/

sang-gil-lee-474904648/tracks

Liang et al. (BachBot), 2017 http://bachbot.com

Malik and Ek (StyleNet), 2017 http://imanmalik.com/cs/2017/06/05/

neural-style.html

Roberts et al. (MusicVAE), 2017 https://www.youtube.com/playlist?list=

PLBUMAYA6kvGU8Cgqh709o5SUvo-zHGTxr

Roberts et al. (MusicVAE), 2018 http://g.co/magenta/musicvae-samples

Sabathé et al. (DRAW), 2017 http://www.openaudio.eu/

Shin et al., 2017 https://soundcloud.com/iclr2018eval

Simon and Oore (PerformanceRNN), 2017 https://magenta.tensorflow.org/

performance-rnn

Teng et al., 2017 https://composing.ai/pieces

Tikhonov and Yamshchikov (VRASH), 2017 https://soundcloud.com/creaited-labs/

Wu et al. (HRNN), 2017 https://www.dropbox.com/s/

vnd6hoq9olrpb5g/SM.zip?dl=0

Yang et al. (MidiNet), 2017 https:

//soundcloud.com/vgtsv6jf5fwq/sets

Colombo and Gerstner (BachProp), 2018 https://goo.gl/Xyx7WV

Eppe et al., 2018 http://www.publications.eppe.eu/data/

Giuliani_Op74_No15_Andantino_grazioso_

merged

Eppe et al., 2018 http:

//www.publications.eppe.eu/data/The_

Beatles_Ob-La-Di_Ob-La-Da_merged.wav

http://people.cs.vt.edu/czq/publication/fusiongan/
http://people.cs.vt.edu/czq/publication/fusiongan/
https://goo.gl/CHhoAu
https://www.cs.hmc.edu/~ddjohnson/tied-parallel/
https://www.cs.hmc.edu/~ddjohnson/tied-parallel/
https://soundcloud.com/samplernn/sets
http://goo.gl/FWn2EX
https://salu133445.github.io/musegan/
https://magenta.tensorflow.org/nsynth
https://sites.google.com/site/deepbachexamples/
https://sites.google.com/site/deepbachexamples/
https://mobeets.github.io/classifying-vae-lstm/
https://mobeets.github.io/classifying-vae-lstm/
https://coconets.github.io/
http://goo.gl/XIYt9m/
https://soundcloud.com/sang-gil-lee-474904648/tracks
https://soundcloud.com/sang-gil-lee-474904648/tracks
http://bachbot.com
http://imanmalik.com/cs/2017/06/05/neural-style.html
http://imanmalik.com/cs/2017/06/05/neural-style.html
https://www.youtube.com/playlist?list=PLBUMAYA6kvGU8Cgqh709o5SUvo-zHGTxr
https://www.youtube.com/playlist?list=PLBUMAYA6kvGU8Cgqh709o5SUvo-zHGTxr
http://g.co/magenta/musicvae-samples
http://www.openaudio.eu/
https://soundcloud.com/iclr2018eval
https://magenta.tensorflow.org/performance-rnn
https://magenta.tensorflow.org/performance-rnn
https://composing.ai/pieces
https://soundcloud.com/creaited-labs/
https://www.dropbox.com/s/vnd6hoq9olrpb5g/SM.zip?dl=0
https://www.dropbox.com/s/vnd6hoq9olrpb5g/SM.zip?dl=0
https://soundcloud.com/vgtsv6jf5fwq/sets
https://soundcloud.com/vgtsv6jf5fwq/sets
https://goo.gl/Xyx7WV
http://www.publications.eppe.eu/data/Giuliani_Op74_No15_Andantino_grazioso_merged
http://www.publications.eppe.eu/data/Giuliani_Op74_No15_Andantino_grazioso_merged
http://www.publications.eppe.eu/data/Giuliani_Op74_No15_Andantino_grazioso_merged
http://www.publications.eppe.eu/data/The_Beatles_Ob-La-Di_Ob-La-Da_merged.wav
http://www.publications.eppe.eu/data/The_Beatles_Ob-La-Di_Ob-La-Da_merged.wav
http://www.publications.eppe.eu/data/The_Beatles_Ob-La-Di_Ob-La-Da_merged.wav

APPENDIX F

Eppe et al., 2018 http:

//www.publications.eppe.eu/data/Bob_

Dylan_Positively_4th_Street_merged.wav

Koh et al. (C-RVAE), 2018 https:

//soundcloud.com/user-431911640/sets

Mao et al. (DeepJ), 2018 https://github.com/calclavia/DeepJ/

tree/icsc/archives/v1

Simon et al. (MusicVAE), 2018 https://goo.gl/s2N7dV

http://www.publications.eppe.eu/data/Bob_Dylan_Positively_4th_Street_merged.wav
http://www.publications.eppe.eu/data/Bob_Dylan_Positively_4th_Street_merged.wav
http://www.publications.eppe.eu/data/Bob_Dylan_Positively_4th_Street_merged.wav
https://soundcloud.com/user-431911640/sets
https://soundcloud.com/user-431911640/sets
https://github.com/calclavia/DeepJ/tree/icsc/archives/v1
https://github.com/calclavia/DeepJ/tree/icsc/archives/v1
https://goo.gl/s2N7dV

APPENDIX G

Method: Datasets
Information and links to source locations of used datasets.

Id Name Source
ESSEN EsAC - Essen Associative

Code and Folksong Database
http://kern.ccarh.org/

browse?l=essen

SESSION The Session https://github.com/

IraKorshunova/folk-rnn/

tree/master/data

NOTTINGHAM Nottingham Database http://www-etud.iro.

umontreal.ca/~boulanni/

icml2012

PIANOMIDI Piano-midi.de http://www.piano-midi.

de/

MUSEDATA MuseData Musical Data http://www-etud.iro.

umontreal.ca/~boulanni/

icml2012

MAHLER (Custom dataset) http://gustavmahler.com/

midi.html

http://midi-orchestra.

xii.jp/ta/mahler.htm

https://www.youtube.com/

watch?v=K-3NFGlDPKk

http://kern.ccarh.org/browse?l=essen
http://kern.ccarh.org/browse?l=essen
https://github.com/IraKorshunova/folk-rnn/tree/master/data
https://github.com/IraKorshunova/folk-rnn/tree/master/data
https://github.com/IraKorshunova/folk-rnn/tree/master/data
http://www-etud.iro.umontreal.ca/~boulanni/icml2012
http://www-etud.iro.umontreal.ca/~boulanni/icml2012
http://www-etud.iro.umontreal.ca/~boulanni/icml2012
http://www.piano-midi.de/
http://www.piano-midi.de/
http://www-etud.iro.umontreal.ca/~boulanni/icml2012
http://www-etud.iro.umontreal.ca/~boulanni/icml2012
http://www-etud.iro.umontreal.ca/~boulanni/icml2012
http://gustavmahler.com/midi.html
http://gustavmahler.com/midi.html
http://midi-orchestra.xii.jp/ta/mahler.htm
http://midi-orchestra.xii.jp/ta/mahler.htm
https://www.youtube.com/watch?v=K-3NFGlDPKk
https://www.youtube.com/watch?v=K-3NFGlDPKk

APPENDIX H

Results: Samples
Overview of listening samples from experiments available at http://www.mahlernet.se. The bars
column refers to 1-indexed bars in the source file, where applicable, with START signifying the
use of a vector with only the special START token. The dataset column indicates which dataset of
ESSEN (ES), SESSION (SE), NOTTINGHAM (NO), PIANOMIDI (PI), MUSEDATA (MU) and
MAHLER (MA) the model that generated the sample was trained on. It is also indicated if the
sample was generated with a regular RNN decoder (R) an RNN decoder with scheduled sampling
(S) or a BALSTM (B) and if it was a model that used context (C) or not. More details on the
setups can be found in section 5.

Experiment 1 with Pitch Only
Name Type File Bars Dataset
1-1 10-step interpolation sessiontune6 13, 17 SE(R)
1-2 10-step interpolation sessiontune14425 1, 4 SE(R)
1-3 10-step interpolation sessiontune6 13, 17 SE(S)
1-4 10-step interpolation sessiontune14425 1, 4 SE(S)
1-5 10-step interpolation sessiontune6 13, 17 SE(B)
1-6 10-step interpolation sessiontune14425 1, 4 SE(B)
1-7 10-step interpolation essen_europa_sverige_sverig03 2, 7 ES(R)
1-8 10-step interpolation essen_europa_sverige_sverig03 2, 7 ES(S)
1-9 10-step interpolation essen_europa_sverige_sverig03 2, 7 ES(B)
1-10 1-bar random sample - - SE(R)
1-11 1-bar random sample - - SE(S)
1-12 1-bar random sample - - SE(B)
1-13 1-bar random sample - - ES(R)
1-14 1-bar random sample - - ES(S)
1-15 1-bar random sample - - ES(B)
1-16 10-bar seeded sample sessiontune0 START, 1 SE(R)
1-17 10-bar seeded sample sessiontune0 START, 1 SE(S)
1-18 10-bar seeded sample sessiontune0 START, 1 SE(B)
1-19 10-bar seeded sample essen_europa_sverige_sverig06 START, 1 ES(R)
1-20 10-bar seeded sample essen_europa_sverige_sverig06 START, 1 ES(S)
1-21 10-bar seeded sample essen_europa_sverige_sverig06 START, 1 ES(B)
1-22 10-bar seeded sample sessiontune0 START, 1 SE(RC)
1-23 10-bar seeded sample sessiontune0 START, 1 SE(SC)
1-24 10-bar seeded sample sessiontune0 START, 1 SE(BC)
1-25 10-bar seeded sample essen_europa_sverige_sverig06 START, 1 ES(RC)
1-26 10-bar seeded sample essen_europa_sverige_sverig06 START, 1 ES(SC)
1-27 10-bar seeded sample essen_europa_sverige_sverig06 START, 1 ES(BC)

http://www.mahlernet.se

APPENDIX H

Experiment 2 with All Properties
Name Type File Bars Dataset
2-1 10-step interpolation mz_333_1 137, 204 PI(R)
2-2 5-step interpolation pathetique_1 106, 111 PI(R)
2-3 1-bar random sample - - PI(R)
2-4 10-bar random sample - - PI(R)
2-5 10-step interpolation mz_333_1 137, 204 PI(S)
2-6 5-step interpolation pathetique_1 106, 111 PI(S)
2-7 1-bar random sample - - PI(S)
2-8 10-step interpolation mz_333_1 137, 204 PI(B)
2-9 5-step interpolation pathetique_1 106, 111 PI(B)
2-10 1-bar random sample - - PI(B)
2-11 10-bar random sample - - PI(R)
2-12 10-step interpolation mozart.conc.k466_midi1_01 48, 51 MU(R)
2-13 1-bar random sample - - MU(R)
2-14 10-step interpolation mozart.conc.k466_midi1_01 48, 51 MU(S)
2-15 1-bar random sample - - MU(S)
2-16 10-step interpolation mozart.conc.k466_midi1_01 48, 51 MU(B)
2-17 1-bar random sample - - MU(B)
2-18 10-bar seeded sample elise 1, 2 PI(RC)
2-19 10-bar seeded sample mz_333_1 START, 1 PI(RC)
2-20 10-bar seeded sample mz_333_1 45, 46 PI(RC)
2-21 10-bar seeded sample mz_333_1 122, 123 PI(RC)
2-22 10-bar seeded sample mz_333_1 140, 141 PI(RC)
2-23 10-bar seeded sample pathetique_3 1, 2 PI(RC)
2-24 10-bar seeded sample pathetique_3 58, 59 PI(RC)
2-25 10-bar seeded sample chpn_op10_e01 1, 2 PI(RC)
2-26 10-bar random sample - START PI(RC)
2-27 10-bar random sample - START PI(RC)
2-28 10-bar random sample - START PI(RC)
2-29 10-bar random sample - START PI(RC)
2-30 10-bar random sample - START PI(RC)
2-31 100-bar random sample - START PI(RC)
2-32 10-bar seeded sample chpn_op10_e01 1, 2 PI(SC)
2-33 10-bar seeded sample elise 1, 2 PI(SC)
2-34 10-bar seeded sample mz_333_1 45, 46 PI(SC)
2-35 10-bar seeded sample mz_333_1 122, 123 PI(SC)
2-36 10-bar seeded sample mz_333_1 140, 141 PI(SC)
2-37 10-bar seeded sample pathetique_3 1, 2 PI(SC)
2-38 10-bar seeded sample pathetique_3 58, 59 PI(SC)

APPENDIX H

2-39 10-bar random sample - START PI(SC)
2-40 10-bar random sample - START PI(SC)
2-41 10-bar random sample - START PI(SC)
2-42 10-bar random sample - START PI(SC)
2-43 100-bar random sample - START PI(SC)
2-44 10-bar seeded sample beet.conc.violin_midi1_01 2, 3 MU(RC)
2-45 10-bar seeded sample mozart.conc.k466_midi1_03 20, 21 MU(RC)
2-46 10-bar seeded sample mozart.conc.k466_midi1_03 30, 31 MU(RC)
2-47 10-bar seeded sample mozart.conc.k466_midi1_03 52, 53 MU(RC)
2-48 10-bar seeded sample mozart.conc.k466_midi1_01 44, 45 MU(RC)
2-49 10-bar seeded sample mozart.conc.k622_midi1_01 1, 2 MU(RC)
2-50 10-bar seeded sample mozart.sym.k550_midi1_03 1, 2 MU(RC)
2-51 10-bar random sample - START MU(RC)
2-52 10-bar random sample - START MU(RC)
2-53 10-bar random sample - START MU(RC)
2-54 10-bar random sample - START MU(RC)
2-55 10-bar random sample - START MU(RC)
2-56 10-bar random sample - START MU(RC)
2-57 10-bar random sample - START MU(RC)
2-58 100-bar random sample - START MU(RC)
2-59 100-bar random sample - START MU(RC)
2-60 10-bar seeded sample beet.conc.violin_midi1_01 1, 2 MU(SC)
2-61 10-bar seeded sample beet.conc.violin_midi1_01 2, 3 MU(SC)
2-62 10-bar seeded sample mozart.conc.k466_midi1_03 30, 31 MU(SC)
2-63 10-bar seeded sample mozart.conc.k466_midi1_03 52, 53 MU(SC)
2-64 10-bar random sample - START MU(SC)
2-65 10-bar random sample - START MU(SC)
2-66 10-bar random sample - START MU(SC)
2-67 100-bar random sample - START MU(SC)

Experiment 3 with All Properties
Name Type File Bars Dataset
3-1 10-step interpolation Mahlsy54 10, 11 MA(R)
3-2 10-step interpolation Mahler61 14, 470 MA(R)
3-3 10-step interpolation Mahler61 60, 61 MA(R)
3-4 10-step interpolation 3rd-movement-Feierlich-und-

gemessen-ohne-zu-
schleppen.midi

8, 22 MA(R)

APPENDIX H

3-5 10-step interpolation concatenation of MAHL64O1,
MAHL64O2 and MAHL64O3

689, 691 MA(R)

3-6 10-step interpolation Mahler61 2, 6 MA(S)
3-7 10-step interpolation Mahler61 581, 583 MA(S)
3-8 10-step interpolation Mahler63 79, 80 MA(S)
3-9 10-step interpolation concatenation of MAHL64O1,

MAHL64O2 and MAHL64O3
119, 121 MA(S)

3-10 10-bar seeded sample Mahler61 58, 59 MA(RC)
3-11 10-bar seeded sample Mahler61 59, 60 MA(RC)
3-12 10-bar seeded sample Mahler61 62, 63 MA(RC)
3-13 10-bar seeded sample Mahler61 134, 135 MA(RC)
3-14 10-bar seeded sample Mahler61 264, 265 MA(RC)
3-15 10-bar seeded sample Mahler61 264, 265 MA(RC)
3-16 10-bar seeded sample Mahler61 554, 555 MA(RC)
3-17 10-bar seeded sample Mahler61 567, 568 MA(RC)
3-18 10-bar seeded sample Mahler61 581, 582 MA(RC)
3-19 10-bar seeded sample Mahler63 79, 80 MA(RC)
3-20 10-bar seeded sample Mahler63 85, 86 MA(RC)
3-21 10-bar seeded sample Mahler63 90, 91 MA(RC)
3-22 10-bar seeded sample Mahler63 90, 91 MA(RC)
3-23 10-bar seeded sample Mahlsy54 51, 52 MA(RC)
3-24 10-bar seeded sample Mahlsy54 147, 148 MA(RC)
3-25 10-bar seeded sample concatenation of MAHL64O1,

MAHL64O2 and MAHL64O3
17, 18 MA(RC)

3-26 10-bar seeded sample concatenation of MAHL64O1,
MAHL64O2 and MAHL64O3

17 MA(RC)

3-27 10-bar seeded sample concatenation of MAHL64O1,
MAHL64O2 and MAHL64O3

START,
134

MA(RC)

3-28 10-bar seeded sample concatenation of MAHL64O1,
MAHL64O2 and MAHL64O3

158, 159 MA(RC)

3-29 10-bar seeded sample concatenation of MAHL64O1,
MAHL64O2 and MAH64O3

210, 211 MA(RC)

3-30 10-bar seeded sample concatenation of MAHL64O1,
MAHL64O2 and MAHL64O3

446, 447 MA(RC)

3-31 10-bar seeded sample concatenation of MAHL64O1,
MAHL64O2 and MAHL64O3

454, 455 MA(RC)

3-32 10-bar seeded sample concatenation of MAHL64O1,
MAHL64O2 and MAHL64O3

466, 467 MA(RC)

3-33 10-bar seeded sample concatenation of MAHL64O1,
MAHL64O2 and MAHL64O3

490, 491 MA(RC)

APPENDIX H

3-34 10-bar seeded sample concatenation of MAHL64O1,
MAHL64O2 and MAHL64O3

491, 492 MA(RC)

3-35 10-bar seeded sample concatenation of MAHL64O1,
MAHL64O2 and MAHL64O3

689, 690 MA(RC)

3-36 10-bar seeded sample concatenation of MAHL64O1,
MAHL64O2 and MAHL64O3

723, 724 MA(RC)

3-37 10-bar seeded sample concatenation of MAHL64O1,
MAHL64O2 and MAHL64O3

727, 728 MA(RC)

3-38 10-bar seeded sample concatenation of MAHL64O1,
MAHL64O2 and MAHL64O3

727, 728 MA(RC)

3-39 10-bar seeded sample 3rd-movement-Feierlich-und-
gemessen-ohne-zu-
schleppen.midi

2, 3 MA(RC)

3-40 10-bar random sample - - MA(RC)
3-41 10-bar random sample - - MA(RC)
3-42 10-bar random sample - - MA(RC)
3-43 100-bar random sample - - MA(RC)
3-44 100-bar random sample - - MA(RC)
3-45 10-bar seeded sample Mahler61 554, 555 MA(SC)
3-46 10-bar seeded sample Mahler61 58, 59 MA(SC)
3-47 10-bar seeded sample Mahler61 58, 59 MA(SC)
3-48 10-bar seeded sample Mahler61 59, 60 MA(SC)
3-49 10-bar seeded sample Mahler61 62, 63 MA(SC)
3-50 10-bar seeded sample Mahler61 134, 135 MA(SC)
3-51 10-bar seeded sample Mahler61 268, 269 MA(SC)
3-52 10-bar seeded sample Mahler61 469, 470 MA(SC)
3-53 10-bar seeded sample Mahler61 581, 582 MA(SC)
3-54 10-bar seeded sample Mahler61 583, 584 MA(SC)
3-55 10-bar seeded sample Mahler61 600, 601 MA(SC)
3-56 10-bar seeded sample Mahler61 602, 603 MA(SC)
3-57 10-bar seeded sample Mahler63 79, 80 MA(SC)
3-58 10-bar seeded sample Mahler63 79, 80 MA(SC)
3-59 10-bar seeded sample Mahler63 85, 86 MA(SC)
3-60 10-bar seeded sample Mahler63 85, 86 MA(SC)
3-61 10-bar seeded sample Mahler63 110, 111 MA(SC)
3-62 10-bar seeded sample Mahler63 110, 111 MA(SC)
3-63 10-bar seeded sample Mahler63 110, 111 MA(SC)
3-64 10-bar seeded sample concatenation of MAHL64O1,

MAHL64O2 and MAHL64O3
133, 134 MA(SC)

APPENDIX H

3-65 10-bar seeded sample concatenation of MAHL64O1,
MAHL64O2 and MAHL64O3

161, 162 MA(SC)

3-66 10-bar seeded sample concatenation of MAHL64O1,
MAHL64O2 and MAHL64O3

210, 211 MA(SC)

3-67 10-bar seeded sample concatenation of MAHL64O1,
MAHL64O2 and MAHL64O3

446, 447 MA(SC)

3-68 10-bar seeded sample concatenation of MAHL64O1,
MAHL64O2 and MAHL64O3

528, 529 MA(SC)

3-69 10-bar seeded sample concatenation of MAHL64O1,
MAHL64O2 and MAHL64O3

724, 725 MA(SC)

3-70 10-bar seeded sample concatenation of MAHL64O1,
MAHL64O2 and MAHL64O3

726, 727 MA(SC)

3-71 10-bar random sample - START MA(SC)
3-72 10-bar random sample - START MA(SC)
3-73 10-bar random sample - START MA(SC)
3-74 10-bar random sample - START MA(SC)
3-75 100-bar random sample - START MA(SC)
3-76 100-bar random sample - START MA(SC)

Extras
Name Type File Bars Dataset
4-1 10-step interpolation Mahler61 1, 5 MA(R)
4-2 10-step interpolation Mahler61 1, 9 MA(R)
4-3 10-step interpolation pathetique_1 106, 111 PI(R)

TRITA EECS-EX

www.kth.se

	Abstract
	Sammanfattning
	Foreword
	1 INTRODUCTION
	1.1 Background
	1.2 Problem Statement and Limitations
	1.3 Ethical, Societal and Sustainability Aspects

	2 FUNDAMENTALS
	2.1 Music
	2.2 Neural Networks

	3 LITERATURE SURVEY
	3.1 Historical Notes
	3.2 The Computer Era
	3.2.1 Algorithmic Composition
	3.2.2 Groupings
	3.2.3 Contemporary Alternatives Without Neural Networks
	3.2.3.1 The Naive Way
	3.2.3.2 Mathematics
	3.2.3.3 Genetic Algorithms
	3.2.3.4 Markov Models or Markov Chains
	3.2.3.5 Grammars and L-Systems
	3.2.3.6 AI Algorithms

	3.2.4 Modelling Music with Neural Networks
	3.2.4.1 Application / Purpose
	3.2.4.2 Domain
	3.2.4.3 Musical Domain
	3.2.4.4 Genre
	3.2.4.5 Input Representation
	3.2.4.6 Data Representation
	3.2.4.7 Model / Architecture
	3.2.4.8 Frameworks
	3.2.4.9 Datasets
	3.2.4.10 Evaluation
	3.2.4.11 Source Code
	3.2.4.12 Samples

	3.3 Summary

	4 METHOD
	4.1 Design Choices
	4.1.1 State of the Art
	4.1.2 Paragons
	4.1.3 Large-scale Design - Architecture
	4.1.4 In-depth Design - Implementation Details

	4.2 MahlerNet
	4.2.1 Modelled Properties
	4.2.1.1 Offset and Duration
	4.2.1.2 Pitch
	4.2.1.3 Instrument

	4.2.2 Preprocessor
	4.2.2.1 The MIDI Format
	4.2.2.2 Tokenization
	4.2.2.3 Processing
	4.2.2.4 Data Representation

	4.2.3 Encoder
	4.2.4 Variational Autoencoder
	4.2.5 Decoder
	4.2.5.1 RNN
	4.2.5.2 BALSTM

	4.2.6 Output Layers

	4.3 File Organization
	4.4 Running MahlerNet
	4.5 Experiments

	5 RESULTS
	5.1 Experiment 1: Modelling Pitch
	5.1.1 Short Runs (VAE Only)
	5.1.2 Long Runs (VAE Only)
	5.1.2.1 BALSTM Transpositional Invariance
	5.1.2.2 VAE Latent Space

	5.1.3 Long Runs (VAE and Context)

	5.2 Experiment 2: Modelling All Properties
	5.2.1 Short Runs (VAE Only)
	5.2.2 Improving the Results
	5.2.2.1 Conditioning on Metric Structure
	5.2.2.2 Improving Pitch Predictions
	5.2.2.3 Conditioning on Active Instrument
	5.2.2.4 The New Default

	5.2.3 Long Runs (VAE Only)
	5.2.3.1 BALSTM Transpositional Invariance
	5.2.3.2 VAE Latent Space

	5.2.4 Long Runs (VAE and Context)

	5.3 Experiment 3: Modelling Gustav Mahler
	5.3.1 Long Runs (VAE Only)
	5.3.1.1 VAE Latent Space

	5.3.2 Long Runs (VAE and Context)

	6 DISCUSSION
	6.1 Implementation
	6.1.1 MIDI
	6.1.2 Architecture

	6.2 Experiments
	6.2.1 Experiment 1
	6.2.2 Experiment 2
	6.2.3 Experiment 3

	6.3 On the Art of Training Neural Networks

	7 FUTURE WORK
	7.1 MahlerNet
	7.2 Other Strategies
	7.3 Future Directions and Conceptual Ideas

	8 CONCLUSION
	ACKNOWLEDGEMENTS
	BIBLIOGRAPHY
	APPENDICES
	Literature Survey: Frameworks
	Literature Survey: Preprocessing Frameworks
	Literature Survey: Datasets
	Literature Survey: Results
	Literature survey: Sources
	Literature survey: Samples
	Method: Datasets
	Results: Samples

