
MahlerNet: Unbounded Orchestral Music with Neural Networks

Elias Lousseief and Bob L. T. Sturm
School of Electrical Engineering and Computer Science, Royal Institute of Technology (KTH), Stockholm, Sweden

elias.lousseief@blackwinged-angel.com, bobs@kth.se

ABSTRACT

This paper presents MahlerNet, a deep recurrent neural
network that models polyphonic music sequences of arbi-
trary length with an arbitrary number of instruments. The
data representation consists of instrument, pitch, offset and
duration, which is motivated by properties inherent in both
notated and performed music. It generates units of music
(i.e., measures in this work) by sequentially sampling from
distributions conditioned on context. This paper details
experiments using two established datasets (PIANOMIDI
and MUSEDATA), and a new dataset (MAHLER) consist-
ing of all symphonies by Gustav Mahler. The smoothness
of the learned latent space is explored by interpolating be-
tween two given measures of music. Results show that
MahlerNet can generate music resembling its training data
in many respects. Long-term structure is present in the
form of instrumentation, intensity and rhythm, albeit rarely
in the form of longer concrete motives and themes.

1. INTRODUCTION

The involvement of artificial intelligence in Arts practices
is becoming a common activity, and music creation is no
exception. Notably, AI has recently been used in the cre-
ation of popular music 1 and even folk music albums [1],
not to mention start-up companies focused on the auto-
matic generation of music for games 2 and soundtracks. 3

Ultimately, results in the field can serve many uses. AI
composition tools can be used by composers to develop ex-
isting material, give inspiration to fragments of ideas, and
to explore new kinds of music and ways of working.

While much research has been published about the mod-
elling and generation of music, most of it is focused on
melodies, chord progressions, or single instruments. Im-
portant aspects of music, however, are polyphony (multi-
ple simultaneous, autonomous voices or instruments), in-
strumentation, and the development of musical ideas using
multiple voices.

This paper presents MahlerNet [2], a polyphonic music
model that aims to generate orchestral music with any num-

1 https://www.helloworldalbum.net
2 https://melodrive.com
3 https://www.aiva.ai

Copyright: c© 2019 Elias Lousseief and Bob L. T. Sturm . This

is an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

ber of instruments. The music representation of Mahler-
Net involves parameterizing each event in terms of a pitch,
offset, duration, and instrument. MahlerNet models se-
quences of these events using a sequence-to-sequence net-
work with context conditioning. These models generate
new material by sampling sequentially from updated pos-
terior distributions of the four parameters.

The rest of this paper has the following structure. Section
2 briefly reviews polyphonic music modelling and genera-
tion. Section 3 presents the representation and architecture
of the proposed model. Section 4 describes several experi-
ments with trained models. Section 5 reviews the strengths
and weaknesses of the results and 6 describes the contribu-
tion of MahlerNet and presents avenues of future work.

2. PREVIOUS WORK

Computational modeling and generation of music has a
long history, stretching back decades to experiments in the
1950s [3]. While these first approaches involved expert-
based systems, with or without probabilistic components,
later approaches take advantage of data for training mu-
sic artificial intelligence (music AI) [4, 5]. Much research
in the domain of music AI – a subdomain of algorith-
mic composition [6] – is concerned with individual mu-
sical voices, e.g., melodies or chord progressions. Poly-
phonic music modeling and generation in contrast can be
more difficult, since it is concerned with multiple simul-
taneous, autonomous voices, perhaps on the same instru-
ment (e.g., piano), or as an ensemble (e.g., choir, chamber
ensemble, or orchestra). Though much recent work ad-
dresses polyphonic music modelling and generation, many
are not concerned with instrumentation at all [7–18]. A
few works use four-part choir [19, 20] or ensembles of in-
struments found in popular music, e.g., bass, guitar, piano
and drums [21–24].

Many polyphonic approaches propose different music rep-
resentations and modelling methods. A common format
is “piano roll”, which is a matrix of time-ordered column
vectors with rows denoting which pitches are on at a given
time [7, 9–15, 18, 20–24]. One column represents activity
during a fixed amount of time (typically in note length)
and is used by a system to generate the activity to fol-
low. This approach is called time slicing. This implies
that simultaneous events are fed in at one go and that the
duration and starting point of each note is implicit, which
makes the representation efficient. Problems involve dis-
tinguishing a sustained long note from successive shorter
ones and in the case of multiple instruments, some extra
device has to take care of which instrument plays what.

https://www.helloworldalbum.net
https://melodrive.com
https://www.aiva.ai
http://creativecommons.org/licenses/by/3.0/


An alternative representation, similar to how MIDI works,
outputs one event at a time, even if the events are simul-
taneous [16, 17, 25, 26]. Such a representation needs to
express starting time and duration explicitly, even though
sometimes, duration is handled by treating the start and end
of a note as separate events [16, 25].

These sequences of note events have often been modelled
by recurrent approaches, such as recurrent neural networks
(RNNs) [7, 9, 13, 14, 16–18]. Restricted Boltzmann ma-
chines have also been used, both as an output function of
RNNs [7, 9] as well as on their own in deep belief net-
works (DBNs) [10] or with convolutional neural networks
(CNNs) [11]. Other attempts use CNNs [20], generative
adversarial networks (GANs) [22], and sigmoid belief net-
works (SBNs) [8]. The variational autoencoder (VAE) has
been used recently [12,15,23–25], sometimes in sequence-
to-sequence networks [23–25]. These are promising ap-
proaches because they learn a structured latent space with
several attractive properties, for example the ability to in-
terpolate between musical material and to perform arith-
metic, such as imposing some attribute to the output by
adding a so-called attribute vector to the latent code [24,
25]. Further details about the VAE can be found in [27] and
in [28]. Among the state of the art in music generation is
MuseNet [26], which is a transformer model (an attention-
based feedforward neural network). MuseNet seems able
to generate impressive, polyphonic compositions in differ-
ent styles with up to 10 different instruments.

Where instruments are handled, their number is usually
restricted to at most four [19–24], with the exception of
MusicVAE which handles 8 in one publication [25], and
MuseNet which handles 10 [26]. Furthermore, the mod-
elling of instruments is usually hard-coded in the architec-
ture [19–25] and not part of the data representation only,
e.g., when an instrument does not play, the network out-
puts a token that implies silence in that voice. This poses
a restriction on the number of instruments that can be used
without making changes to the actual model.

3. MAHLERNET

The overall architecture of MahlerNet is inspired by Mu-
sicVAE [23–25], and its data representation and condition-
ing in output layers is inspired by BachProp [17]. Mahler-
Net is written in python using the deep-learning library
Tensorflow, 4 and the Mido 5 library for MIDI input and
output. Samples of material generated by MahlerNet can
be heard online at http://www.mahlernet.se. At-
tendant code and instructions can be found at the project
github repository. 6

3.1 Data representation

MahlerNet uses a data representation where each played
note (an “event”) is expressed by four parameters. The off-
set parameter is the duration between the last event and the
current one. The duration parameter is the duration of the

4 https://www.tensorflow.org/
5 https://mido.readthedocs.io/en/latest/
6 https://github.com/fast-reflexes/MahlerNet

current event. Both of these parameters index into a set
of 60 possible values – from the 32nd note to a 32nd note
less than five tied quarter notes – plus zero. The zero dura-
tion is used in the offset parameter for simultaneous notes,
and in the duration parameter to signal an advancement of
time only in a non-note event (more on the use of this in
Sec. 3.2). The longest duration was chosen from observing
how notes are often tied over bar lines in music. The pitch
parameter is the pitch number of the current event, which
indexes a set of 96 MIDI pitches from 17 to 112 (both in-
clusive). Finally, the instrument parameter identifies the
instrument playing the current pitch, indexing into a list.
The number of instruments modelled by MahlerNet is ar-
bitrary but the current preprocessor instrument plugin class
makes use of 23 instruments. The number of instruments is
thus not hard-coded into the architecture itself and can be
altered by simply altering the plugin class. The representa-
tion used by BachProp [17] includes the same parameters
except for instrument.

This data representation can be referred to as “sequential
polyphony”, since simultaneous pitches are modelled se-
quentially but with offset parameters set to zero. This is in
contrast to piano roll format where simultaneous pitches
are represented in parallel. The representation used by
MahlerNet alleviates problems that come with some other
approaches, such as time slicing (e.g., rearticulation), and
offers a clear conditioning order among the output notes,
from early to later in time and from lower to higher in
pitch. The latter order of conditioning is reasonable from a
musical perspective where lower notes affect what is played
in higher registers rather than the opposite.

Apart from the described data, each sequential step is also
fed additional conditioning in the form of active pitches
(currently turned on notes) and active instruments (the set
of the instruments of the currently turned on notes). With
one input representing the start of a piece of music (the
context when generating the opening of a piece) and condi-
tioning on position in the underlying metric pulse of eighth
notes, the data representation of a piece of music is a se-
quence of 367-dimensional many-hot binary vectors.

3.2 Preprocessing

For several reasons, MIDI is often not a straightforward
conversion from symbolic (written) music to sounding mu-
sic, which results in both the starting point and the length
of each detected event being subject to normalization. The
notion of MIDI normalization is used in [17] and implies
the definition and use of a set of rules or heuristics with
which we interpret the original MIDI event. The normal-
ized MIDI event is the same event but with starting time
and duration adjusted with respect to some goal, in the
case of MahlerNet what written note it most likely origi-
nated from. For example, even note-writing software will
make use of existing articulations (e.g., staccato, tenuto) in
the score when writing a MIDI file so that the mapping be-
tween the sheet music and the MIDI becomes ambiguous
(an eighth note played tenuto might be easy to mistake for
a quarter note played staccato). On top of that, many MIDI
files on the Internet today are manually recorded from per-

http://www.mahlernet.se
https://www.tensorflow.org/
https://mido.readthedocs.io/en/latest/
https://github.com/fast-reflexes/MahlerNet


formance with MIDI instruments which introduces impre-
cision in many ways. In orchestral MIDI files, to make
the MIDI orchestra sound more like a real orchestra, cre-
ators often manipulate the music in many ways, sometimes
adding things that are not in the score, or altering things,
to make the synthesis sound better.

To deal with these problems, a study of the properties of
notated and performed music have been used to create a
series of heuristic scoring functions that ultimately decide
how to normalize an event in a MIDI file [2]. The goal of
this is to pick the most reasonable candidate given a series
of candidates. Other heuristics govern which candidates to
choose from for a given event. The importance of normal-
izing MIDI files is further discussed in [17].

To train MahlerNet, a dataset of MIDI files is prepro-
cessed into the data representation described in Sec. 3.1.
This entails mapping all MIDI instruments to instrument
classes pre-defined in the preprocessor instrument plugin,
and then ensuring that all pitches for a given instrument are
within the prescribed range ([17, 112]). If some pitches are
outside this range, they are mapped into the range by oc-
tave transposition(s). During the normalization of the off-
set and duration properties of each input MIDI note event,
notes are considered in their context, and not in isolation.

In the preprocessor, each input MIDI file is divided into
segments of events where one segment starts with the de-
tection of a time signature MIDI event (or the beginning of
the piece) and then contains all the events up until the next
time signature (or end of the piece). Fifteen different time
signatures are accounted for and segments beginning with
other time signatures are ignored. This can cause an inter-
ruption in the sequence of consecutive segments, resulting
in a single input piece being divided into several different
uninterrupted sequences of segments.

Dataset preprocessing creates a collection of data rep-
resentation files, where each file corresponds to an unin-
terrupted sequence of segments. During training, the pre-
processor reads these files and divides them, on-the-fly, to
batches of sequences of either a fixed or variable total dura-
tion (hyperparameter). The preprocessor version presented
here uses the variable duration of a measure of music (this
unit length is variable both because any number of events
can actually exist in a measure but primarily because the
actual length, in duration, varies depending on time signa-
ture). For the rest of this paper, a unit of music is consid-
ered a measure.

Input note durations and offsets with normalized dura-
tions longer than the longest duration are divided into sev-
eral smaller, consecutive events in the data representation.
First, the full measures that the duration covers are turned
into different events. Next, the remaining parts of the orig-
inal duration, the beginning and end of it, are normalized
like all other durations with the exception that the one in
the beginning has a fixed end at the end of the measure
and vice versa with the remaining piece at the end. When
this duration is an offset parameter, this process gives rise
to some events that are non-note events that only advance
time, and nothing else.

00101101101
00011010110
01001110101

00101101101
00011010110
01001110101

CTX PREPROCESSINGINPUT PREPROCESSING MIDI DATA

0
1
0
1
0

1
0
1
0
0

Bidirectional RNN

Variational 
Autoencoder

µσ

X~N(0,1)

RNN

00101101101
00011010110
01001110101
00111000000
01000000000

00111000000
01000000000

00111000000
01000000000

0
1
0
1
0

ENCODER

VAE

OUTPUT LAYERS

Concat

Bidirectional RNN

DECODER

Concat

duration

pitch

instrument

0
1
0
1
0

1
0
1
0
0

0
1
0
1
0

INPUT

0 1 0 1 0 1 0 1 0 0 0 1 0 1 0

00101101101
00011010110
01001110101
00111000000
01000000000

offset

YERSOUTPUT LA

Figure 1. Schematic of the MahlerNet architecture.

3.3 Architecture

MahlerNet is a sequence-to-sequence network using a VAE
to model the distribution of the latent state (like Music-
VAE [23–25]). As can be seen in the schematic over the
MahlerNet architecture in Fig. 1, the encoder side con-
sists of two bidirectional RNNs where the first considers
the measure to reconstruct and the second considers a con-
text measure, e.g., the measure before the one to recon-
struct. The final RNN states of both these bidirectional
RNNs are concatenated and used as an input to the VAE,
whose outputs are the parameters of a Gaussian distribu-
tion from which to draw a sample z. The decoder then
uses the sample z as a starting state, and the final states c
of the context bidirectional RNN in the encoder as addi-



tional conditioning. This effectively results in the VAE of
MahlerNet being a Conditional VAE (C-VAE) [29].

Each time the decoder RNN is advanced, it outputs first
the offset parameter, then duration, then pitch and finally
instrument. Sampling these parameters is done using dis-
tributions created from softmax output layers conditioned
on the outputs from the previous output layers, accord-
ing to the parameter order described above (which is also
used in [17]). Denote an observation at state t as xt =
(ot, dt, pt, nt, apt, ant, bt) where ot, dt, pt, nt, apt, ant,
bt denote offset, duration, pitch, instrument, active pitches,
active instruments and metric position, respectively. The
softmax layers output the conditional probability distribu-
tions of the parameters at the next state according to:

P (ot+1 | z, c,x1,x2, . . . ,xt) (1)
P (dt+1 | z, c,x1,x2, . . . ,xt, ot+1) (2)
P (pt+1 | z, c,x1,x2, . . . ,xt, ot+1, dt+1) (3)
P (nt+1 | z, c,x1,x2, . . . ,xt, ot+1, dt+1, pt+1) (4)

Active pitches and instruments, as well as metric posi-
tion in the measure, are computed beforehand for train-
ing data, and are calculated on-the-fly from the sampled
parameters during generation. MahlerNet is highly con-
figurable and comes with optional batch normalization and
dropout with the possibility to use both the β-VAE [30] and
free bits [31] innovations when calculating the Kullback-
Leibler (KL) term of the VAE loss function. These exten-
sions effectively guides the tradeoff between a smooth and
well-behaved latent state and high-quality reconstructions.

4. EXPERIMENTS

Three datasets were used for training and testing Mahler-
Net models: PIANOMIDI, 7 MUSEDATA 8 and a new
dataset consisting of most movements of all ten symphonies
by Gustav Mahler (MAHLER). 9 . Table 1 gives some statis-
tics of these three datasets. The music in the datasets are
used as is with no transposition to a common key. A hy-
perparameter grid-search was conducted for each dataset
whereupon activation function, learning rate and RNN cell
type were established.

Trained models were evaluated in two ways: interpola-
tions between given measures from the training datasets,
and random or seeded sampling. After sampling from the
VAE, the MahlerNet decoder is allowed to decode for as
many steps as needed to output events with a total duration
less than or equal to a full measure, as dictated by the de-
sired time signature. Each generated measure can be used
as context for the next. Teacher forcing (target output is
fed as input to update an RNN instead of its actual output)
was used in training the decoder.

Training was done on a GeForce GTX1080Ti GPU and
took at most two hours for any individual setup and dataset.

7 http://www.piano-midi.de/
8 https://musedata.org/ fetched from http://

www-etud.iro.umontreal.ca/˜boulanni/MuseData.zip
9 MIDI files for MAHLER were gathered from two online

sources: http://gustavmahler.com/midi.html and http:
//midi-orchestra.xii.jp/ta/mahler.htm

Dataset PIANOMIDI MUSEDATA MAHLER
Measures 47544 37006 17450

Max length 116 158 303
Avg. length 14.16 26.25 29.01

Table 1. Statistics about the three datasets used in this
work. The length of a measure is the number of events
it contains.

4.1 Model training setup

MahlerNet models were trained separately with and with-
out contextual input, after the initial hyperparameter grid
search. Training was done with LSTM (long short-term
memory) units in RNN layers, RMSProp optimizer and
learning rate set to 0.001. Leaky ReLU (rectified lineary
unit) was used as activation function with the exception of
the VAE layers which used SoftPlus activation in the log-
variance layer and no activation in the layer outputting the
distribution mean. A batch size of 128 was maintained
for all experiments except for the model trained on the
MAHLER dataset with context conditioning; this model
used a batch size of 96 due to size. The VAE had a single
layer with 256 nodes whereas both encoder and decoder
RNNs had two layers with 512 nodes in each. All models
were trained with batch normalization in all dense layers,
except for in the output layers and in the layers belonging
to the VAE. The batch normalization takes place before the
activation function but after the multiplication (as opposed
to after the activation function as sometimes advocated).

We trained models without contextual input conditioning
without dropout in a way similar to MusicVAE [23, 24],
annealing the VAE loss function at rate 0.00001 with a β
parameter of 0.2, calculated with 48 free bits. These set-
tings favor reconstruction accuracy of training data over
the quality of the latent space. By “quality” we mean that
the decoder has been exposed to and has had the opportu-
nity to be trained on all (most) points of the latent space,
and that the transition between nearby points in the latent
space results in gradual and small changes in the output
space.

These models are meant to overfit, but to reconstruct in-
put training samples accurately and interpolate between
them in the latent space in a meaningful way. Interpola-
tions are done by taking two endpoint measures from the
training data and run them through the trained encoder and
the VAE to generate a distribution for each. After sampling
from both, ten steps of interpolation move from one sam-
pled latent vector to the other. Because of the overfitting
objective, no validation set was used and all models were
trained for a fixed number of epochs (50).

We trained models using context conditioning with a drop-
out rate of 0.35 (probability of dropped connection) after
the activation and with the VAE loss disregarding beta an-
nealing or free bits. A validation set of 10% of the training
data was used to determine when to abort training. These
models are meant to create coherent sequences of measures
sampling one measure at a time using the last measure as
context. They are initialized either with a random vector
with the same size as z sampled from a standard Gaussian

http://www.piano-midi.de/
https://musedata.org/
http://www-etud.iro.umontreal.ca/~boulanni/MuseData.zip
http://www-etud.iro.umontreal.ca/~boulanni/MuseData.zip
http://gustavmahler.com/midi.html
http://midi-orchestra.xii.jp/ta/mahler.htm
http://midi-orchestra.xii.jp/ta/mahler.htm


Teacher forcing
Dataset with without
PIANOMIDI 98.29% 80.94%
MUSEDATA 96.11% 45.87%
MAHLER 94.43% 27.20%

Table 2. Comparison of reconstruction accuracy of pitch
with and without teacher forcing for models without con-
textual conditioning.

distribution (random sampling) or with a z vector sampled
from the VAE originating from some chosen input and con-
text vectors (seeded sampling). The context vector is either
a “start” measure (only containing one step with only the
“start” class set) or with some other measure, e.g., the one
preceding the one to compose, for seeded sampling.

4.2 Results

Table 2 summarizes the results of experiments with the
three datasets. Models trained without context condition-
ing were all trained for 50 epochs at which point almost
no further improvement was observed. When attempting
to reconstruct the training data without teacher forcing, a
heavy drop in performance is visible. This is proportional
to the average and maximum length of the sequences, as
shown in table 1, in the different datasets.

Interpolations with these models seem successful for short
sequences (< 30 events), and endpoints are properly re-
constructed with a plausible transition between them. An
example of this can be seen in figure 2. With longer se-
quences, the transitions are less plausible and musical de-
viations from both endpoints take place. Sometimes, not
even the endpoint measures are properly reconstructed even
though often, the first notes are correct.

We stopped the training of models with context condi-
tioning once the performance on validation sets started to
drop. For PIANOMIDI, MUSEDATA and MAHLER, this
resulted in the models training for 15, 21 and 31 epochs.
With these models, exact reconstruction is worse than with
previous models but quite to the contrary, random sam-
pling works better and the decoders produce plausible mu-
sic output.

We perform interpolations in 10 steps. Generated sam-
ples have 10 or 100 bars. We sampled all material at soft-
max temperatures around 0.9 for models trained on PI-
ANOMIDI and MUSEDATA, and at around 0.6 for the
MAHLER model.

5. DISCUSSION

The strongest argument in favour of using MIDI for train-
ing data is the availability where thousands of MIDI files
can be found online. However, in principle, it is a represen-
tation of performed music rather than written. As a result,
a very large responsibility is placed on the preprocessor
when using this format to model written music.

The reconstruction capability of models trained without
context conditioning drastically deteriorates as the number

of events increases. In accord with what is said with re-
spect to MusicVAE in [23–25] and brought up elsewhere
[32], what is believed to happen here is a phenomenon
named “mode collapse”: the decoder learns to neglect the
latent code and only base its output on the teacher-forced
input. Evidently, when not even the endpoints can be prop-
erly reconstructed, it affects interpolations in a negative
way. Nonetheless, often the measures resulting from these
interpolations are plausible as music, however not consti-
tuting a smooth and continuous transition between the end-
points as desired.

Random sampled measures (generate a random z vector
and decode it) from these models however do not pass off
as music and neither of the output parameters, inspected in
sequence, are realistic. This is quite in contrast to the result
with seeded samples and it turns out that the lack of regu-
larization of the latent space is the cause for this; the use of
a β weight and free bits results in better reconstructions but
less smooth latent space. Here it is obvious that it is fairly
simple to sample a latent vector that the decoder has never
experienced and it is thus uncertain how it will be decoded.
However, mode collapse aside, interpolations are still well-
behaved and since the MusicVAE is used with interpola-
tions, the slackened regularization of the latent space ap-
pears reasonable in that case. For MahlerNet when used
with context conditioning however, random sampling is an
important factor and so these modifications of the VAE loss
must be left out.

At the cost of exact reconstruction, the removal of these
components effectively improves the outcome of sampling
procedures in the models trained with context condition-
ing. With consecutive generation of multiple measures,
no matter if the decoder is fed a random latent vector or
seeded with one coming from a given input and context,
the music is coherent in terms of dynamic tension, active
instruments, intensity, tonality and rhythm.

We can find clear differences between outputs depending
on training data. The model trained on MUSEDATA pro-
duces music that sounds Classic and Baroque whereas the
model trained on MAHLER generates samples that sound
more dissonant and characteristic of music of the Romantic
period – both in line with the music found in the datasets.
The output from the model trained with PIANOMIDI has
almost always piano only whereas instruments such as tuba
and trombone, which are quite common in the Romantic
era but not in the Classic and Baroque eras, are commonly
seen in output from the model trained on MAHLER but
not in the other models.

Furthermore, instruments tend to stay within their real
ranges and groups of instruments that typically play to-
gether during the different eras are active together in gener-
ated material as well. Examples of this is the chamber set-
ting with strings, woodwinds and continuo in Baroque mu-
sic and woodwind sections present in Classic music where
strings otherwise dominate. In the 100-bar samples, con-
trasting parts are present both in terms of instrumentation
and homophony versus polyphony. Sections where all in-
struments play often have brass, horns and timpani added
much like in a real scenario with beats 1 and 3 typically



Pizzicato	DB

Strings

























 




 











 






 













  

 

  



 







 

Figure 2. Interpolation (sample 3-1 at http://www.mahlernet.se) between two measures from the 4th movement
of Mahler’s fifth symphony, in a model trained without context conditioning.

emphasized.
Rhythmic consistency is also present and when Mahler-

Net is seeded with a measure containing particular rhythms
(for example triplets) these often prevail for several mea-
sures. Finally, phrase endings with V-I motion are com-
mon, however not as common as in real Classic music.

Despite many good qualities, MahlerNet does only very
occasionally produce music with motivic or thematic con-
tent that persist over many bars. This is a common defect
in music AI based on neural networks. Nevertheless, in the
case of MahlerNet, this tendency is almost expected since
the temporal receptive field only spans one measure of his-
tory; expanding this context is necessary to improve the
conditions.

6. CONCLUSIONS

MahlerNet is a new neural network based on MusicVAE
and BachProp with a new data representation and prepro-
cessor based on BachProp. MahlerNet is a first attempt
at modelling orchestral music using deep neural networks
with an architecture that allows for an unlimited number of
instruments. Even with the limit of the current preproces-
sor, there are, to the authors’ knowledge, many more in-
struments available than in any earlier publication. Music
generated by MahlerNet shows coherence and long-term
structure in many aspects, not the least with respect to in-
strumentation. Furthermore musical style is clear and cor-
relates with training data and the music is both plausible
and shows qualitative pregnancy. Reoccurring themes and
motives, important aspects of music, are however rare find-
ings in samples, perhaps due to the almost naively short
context of a measure that is fed as conditioning.

The next step in developing MahlerNet is to increase its
temporal receptive field by experimenting with longer con-
texts. The mode collapse problems in the decoder should

be addressed, as well as steering the generation process
with more conditioning. Further research on the impact
of batch normalization on the latent space is also desirable
since there are some indications that the structure of the
latent space suffers from the use of it. On a more general
level, an interesting direction of the future of music AI is
hierarchical and transformer-based architectures.

Acknowledgments

The authors would like to thank the creators of the Mahler
symphonies in MIDI format found online. 10 EL wrote
most of this paper, and wrote all computer code. BLTS
supervised of EL’s master’s thesis research, and initiated
and edited this paper.

7. REFERENCES

[1] B. L. Sturm and O. Ben-Tal, “Let’s Have Another Gan
Ainm: An experimental album of Irish traditional mu-
sic and computer-generated tunes,” KTH Royal Insti-
tute of Technology, Tech. Rep., 2018.

[2] E. Lousseief, “MahlerNet - Unbounded Orchestral Mu-
sic with Neural Networks,” Master’s thesis, Royal In-
stitute of Technology, Stockholm, Sweden, 6 2019.

[3] L. Hiller and L. Isaacson, Experimental Music: Com-
position with an Electronic Computer. New York,
USA: McGraw-Hill Book Company, 1959.

[4] J. D. Fernández and F. Vico, “AI methods in algorith-
mic composition: A comprehensive survey,” J. Artifi-
cial Intell. Res., vol. 48, no. 1, pp. 513–582, Oct. 2013.

[5] J.-P. Briot, G. Hadjeres, and F. Pachet, Deep learning
techniques for music generation. Springer, 2019.

10 http://gustavmahler.com/midi.html and http:
//midi-orchestra.xii.jp/ta/mahler.htm

http://www.mahlernet.se
http://gustavmahler.com/midi.html
http://midi-orchestra.xii.jp/ta/mahler.htm
http://midi-orchestra.xii.jp/ta/mahler.htm


[6] R. Dean and A. McLean, Eds., The Oxford Handbook
of Algorithmic Music. Oxford, UK: Oxford University
Press, 2018.

[7] N. Boulanger-Lewandowski, Y. Bengio, and P. Vin-
cent, “Modeling Temporal Dependencies in High-
Dimensional Sequences: Application to Polyphonic
Music Generation and Transcription,” Proc. Int. Conf.
Machine Learning, 2012.

[8] Z. Gan, C. Li, R. Henao, D. Carlson, and L. Carin,
“Deep Temporal Sigmoid Belief Networks for Se-
quence Modeling,” in Proc. Int. Conf. Neural Informa-
tion Process. Systems, 2015, pp. 2467–2475.

[9] Q. Lyu, Z. Wu, J. Zhu, and H. Meng, “Modelling High-
dimensional Sequences with LSTM-RTRBM: Appli-
cation to Polyphonic Music Generation,” in Proc. Int.
Conf. Artificial Intell., 2015.

[10] F. Sun, “DeepHear - Composing and harmonizing mu-
sic with neural networks,” https://fephsun.github.io/
2015/09/01/neural-music.html, 2015, accessed: 2019-
10-29.

[11] S. Lattner, M. Grachten, and G. Widmer, “Imposing
higher-level Structure in Polyphonic Music Generation
using Convolutional Restricted Boltzmann Machines
and Constraints,” CoRR, vol. abs/1612.04742, 2016.

[12] J. A. Hennig, A. Umakantha, and R. C. Williamson,
“A Classifying Variational Autoencoder with Appli-
cation to Polyphonic Music Generation,” CoRR, vol.
abs/1711.07050, 2017.

[13] D. D. Johnson, “Generating Polyphonic Music Using
Tied Parallel Networks,” in EvoMusArt2017, 2017.

[14] F. Liang, M. Gotham, M. Johnson, and J. Shotton, “Au-
tomatic Stylistic Composition of Bach Chorales with
Deep LSTM,” in Proc. Int. Symp. Music Info. Retrieval,
2017.

[15] R. Sabathé, E. Coutinho, and B. Schuller, “Deep re-
current music writer: Memory-enhanced variational
autoencoder-based musical score composition and an
objective measure,” in Proc. Int. Joint Conf. Neural
Networks, May 2017, pp. 3467–3474.

[16] I. Simon and S. Oore, “Performance RNN: Generating
Music with Expressive Timing and Dynamics,” https:
//magenta.tensorflow.org/performance-rnn, 2017, ac-
cessed: 2019-10-29.

[17] F. Colombo and W. Gerstner, “BachProp: Learning
to Compose Music in Multiple Styles,” CoRR, vol.
abs/1802.05162, 2018.

[18] H. H. Mao, T. Shin, and G. W. Cottrell, “DeepJ:
Style-Specific Music Generation,” CoRR, vol.
abs/1801.00887, 2018.

[19] G. Hadjeres and F. Pachet, “DeepBach: a Steer-
able Model for Bach chorales generation,” CoRR, vol.
abs/1612.01010, 2017.

[20] C.-Z. Huang, T. Cooijmans, A. Roberts, A. Courville,
and D. Eck, “Counterpoint by Convolution,” in Proc.
Int. Symp. Music Infor. Retrieval, 2017.

[21] H. C. Chu, R. Urtasun, and S. Fidler, “Song From PI:
A Musically Plausible Network for Pop Music Gener-
ation,” CoRR, vol. abs/1611.03477, 2016.

[22] H.-W. Dong, W.-Y. Hsiao, L.-C. Yang, and Y.-H. Yang,
“MuseGAN: Multi-track Sequential Generative Adver-
sarial Networks for Symbolic Music Generation and
Accompaniment,” AAAI 2018, 2017.

[23] A. Roberts, J. Engel, and D. Eck, “Hierarchical Vari-
ational Autoencoders for Music,” in Workshop on Ma-
chine Learning for Creativity and Design, NIPS, 2017.

[24] A. Roberts, J. Engel, C. Raffel, C. Hawthorne, and
D. Eck, “A Hierarchical Latent Vector Model for
Learning Long-Term Structure in Music,” CoRR, vol.
abs/1803.05428, 2018.

[25] I. Simon, A. Roberts, C. Raffel, J. Engel,
C. Hawthorne, and D. Eck, “Learning a Latent Space
of Multitrack Measures,” CoRR, vol. abs/1806.00195,
2018.

[26] C. Payne, “MuseNet,” https://openai.com/blog/
musenet/, April 2019, accessed: 2019-09-19.

[27] D. P. Kingma and M. Welling, “Auto-Encoding Varia-
tional Bayes,” CoRR, vol. abs/1312.6114, 2013.

[28] D. Jimenez Rezende, S. Mohamed, and D. Wier-
stra, “Stochastic Backpropagation and Approximate
Inference in Deep Generative Models,” CoRR, vol.
abs/1401.4082, 2014.

[29] K. Sohn, H. Lee, and X. Yan, “Learning Structured
Output Representation using Deep Conditional Gener-
ative Models,” in Proc. Advances in Neural Info. Pro-
cess. Systems, 2015, pp. 3483–3491.

[30] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot,
M. Botvinick, S. Mohamed, and A. Lerchner, “β-VAE:
Learning Basic Visual Concepts with a Constrained
Variational Framework,” in Proc. Int. Conf. Learning
Representations, 2017.

[31] D. P. Kingma, T. Salimans, and M. Welling, “Improv-
ing Variational Inference with Inverse Autoregressive
Flow,” CoRR, vol. abs/1606.04934, 2016.

[32] S. R. Bowman, L. Vilnis, O. Vinyals, A. M.
Dai, R. Józefowicz, and S. Bengio, “Generating
Sentences from a Continuous Space,” CoRR, vol.
abs/1511.06349, 2015.

https://fephsun.github.io/2015/09/01/neural-music.html
https://fephsun.github.io/2015/09/01/neural-music.html
https://magenta.tensorflow.org/performance-rnn
https://magenta.tensorflow.org/performance-rnn
https://openai.com/blog/musenet/
https://openai.com/blog/musenet/

	 1. Introduction
	 2. Previous work
	 3. MahlerNet
	3.1 Data representation
	3.2 Preprocessing
	3.3 Architecture

	 4. Experiments
	4.1 Model training setup
	4.2 Results

	 5. Discussion
	 6. Conclusions
	 7. References

